Предисловие

Все виды полимерных материалов - это вещества, в которых каждая молекула представляет собой цепь из десятков или сотен тысяч последовательно соединенных одинаковых групп атомов, причем одна и та же группа атомов ритмически повторяется много раз.

Cодержание

К основным полимерным материалам относятся смолы и пластмассы. В зависимости от того, термопластичный это полимер или термореактивный, материал может либо размягчаться и затвердевать многократно, либо при однократном нагревании переходить в твердое состояние и навсегда утрачивать способность плавиться. Чаще всего используются такие современные полимерные материалы, как дисперсии, латексы и клеевые составы.

Что такое строительные полимерные материалы

Что такое полимерные материалы и как их используют в строительстве? Все виды полимерных материалов - это вещества, в которых каждая молекула представляет собой цепь из десятков или сотен тысяч последовательно соединенных одинаковых групп атомов, причем одна и та же группа атомов ритмически повторяется много раз.

Основные виды полимерных материалов делятся на термопластичные и термореактивные. Термопластичные полимеры способны многократно размягчаться и затвердевать при изменении температуры, а также легко набухать и растворяться в органических растворителях. К ним относятся полистирольные, полиэтиленовые и поливинилхлоридные (полихлорвиниловые) смолы и пластмассы.

Основное свойство термореактивных полимерных материалов – переход при нагревании в нерастворимое твердое состояние и безвозвратная утрата способности плавиться. К таким полимерам относятся фенолоформальдегидные и мочевиноформальдегидные, полиэфирные и эпоксидные смолы.

Отдельные виды полимерных материалов в строительстве под действием тепла, света и кислорода воздуха с течением времени изменяют свойства: теряют гибкость, эластичность, проще говоря, стареют.

Для предотвращения старения современных строительных полимерных материалов применяются специальные стабилизаторы (антистарители), представляющие собой различные металлоорганические соединения свинца, бария, кадмия и др. Например, в качестве стабилизатора применяется тинувин П.

Какие бывают полимерные материалы, и каковы их основные характеристики, вы узнаете на этой странице.

Полимерные материалы пластмассы и их свойства

Один из основных типов полимерных материалов – это пластмассы. Они представляют собой группу органических материалов, основу которых составляют синтетические или природные смолообразные высокомолекулярные вещества, способные при нагревании и давлении формоваться, устойчиво сохраняя приданную им форму.

Полимерные материалы пластмассы обладают хорошими теплоизоляционными и электроизоляционными качествами, коррозийной стойкостью и долговечностью. Средняя плотность пластмасс - 15-2200 кг/м3; предел прочности при сжатии - 120-160 МПа. Пластмассы наделены хорошими электро-теплоизоляционными свойствами, коррозийной стойкостью и долговечностью. Некоторые из них обладают прозрачностью и высокой клеящей способностью, а также имеют свойство образовывать тонкие пленки и защитные покрытия. Благодаря своим свойствам широкое применение эти полимерные материалы нашли в строительстве, главным образом в комбинации с вяжущими веществами, металлами и каменными материалами.

Пластмассы состоят из связующего вещества - полимера, наполнителя, пластификатора и ускорителя отверждения. При изготовлении цветных пластмасс также используются минеральные красители.

В качестве наполнителей при изготовлении этого типа полимерных материалов используются органические и минеральные порошки, асбестовые, древесные и стеклянные волокна, бумага, стеклянные и хлопчатобумажные ткани, древесный шпон, асбестовый картон и др. Наполнители не только снижают стоимость материала, но и улучшают отдельные свойства пластмасс: повышают твердость, прочность, стойкость к кислотам и теплостойкость. Они должны быть химически инертными, малолетучими и нетоксичными. Пластификаторами при изготовлении пластмасс служат цинковая кислота, стеарат алюминия и иные, которые придают материалу большую пластичность. Катализаторы (ускорители) применяются в пластмассах для ускорения отверждения. Примером катализатора могут служить известь или уротропин, которые применяются для отверждения фенолоформальдегидного полимера.

Синтетические полимерные материалы и их применение

По способу производства синтетические полимерные материалы подразделяются на два класса: класс А - полимеры, получаемые цепной полимеризацией; класс Б - полимеры, получаемые поликонденсацией и ступенчатой полимеризацией.

Процесс полимеризации представляет собой соединение одинаковых и разных молекул. Побочных продуктов при полимеризации не образуется.

Процесс поликонденсации представляет собой соединение большого количества одинаковых и различных полиреактивных молекул низкомолекулярных веществ, в результате чего образуется высокомолекулярное вещество. При процессе поликонденсации выделяются вода, хлористый водород, аммиак и другие вещества.

Кремнийорганические смолы - это особая группа высокомолекулярных соединений. Особенность этих полимерных строительных материалов состоит в том, что они обладают свойствами как органических, так и неорганических веществ.

Физические и механические характеристики этих полимерных материалов практически не зависят от колебаний температуры по сравнению с обычными смолами, к тому же они обладают высокой гидрофобностью и теплостойкостью. Кремнийорганические смолы служат для получения различных изделий, стойких к действию повышенных температур (400-500°С).

Основная область применения этих синтетических полимерных материалов – изготовление бетонов и растворов для повышения их долговечности. Также их применяют в виде защитных покрытий на природных и искусственных каменных материалах (бетоне, известняке, травертине, мраморе и т. д.). Пропитка оказывает защитное действие в течение 6-10 лет, после чего ее следует возобновить.

Для поверхностей пропитки изделий из природного камня и других строительных конструкций применяют гидрофобизирующие кремнийорганические жидкости (ГКЖ), которые перед употреблением растворяют органическими растворителями, а также водную 50%-ную эмульсию (молочно-белого цвета), которую перед употреблением смешивают с водой в соотношении 1:10.

Поливинилацетатная дисперсия (ПВА) - это продукт полимеризации винилацетата в водной среде в присутствии инициатора и защитного коллоида. Это вязкая жидкость белого цвета, однородная, без криков и посторонних включений.

ПВА в зависимости от вязкости изготавливается трех марок: Н - низковязкая, С - средневязкая, В - высоковязкая. Она применяется при изготовлении полимерцементных растворов, мастик, паст, которые используются при облицовочных работах.

Латекс синтетический СКС-65ГП - продукт совместной полимеризации бутадиена со стиролом в соотношении 35:65 (по массе) в водной эмульсии с применением в качестве эмульгатора некаля и натриевого мыла синтетических жирных кислот. Латекс СКС-65ГП используется при изготовлении полимербетонов, эмульсионных красок, мастик и паст, применяемых при облицовочных работах. Также латекс используется при нанесении различных покрытий.

Физико-химические свойства этого полимерного строительного материала латекс СКС-65ГП:

  • содержание сухого вещества, %, не менее 47;
  • содержание незаполимеризованного стирола, %, не более 0,08;
  • концентрация водородных ионов (pH), не менее 11;
  • поверхностное натяжение, дин/см2, не более 40;
  • вязкость, с - 11-15;
  • содержание золы, %, не более 1,5.

Латекс синтетический СКС-ЗОШР - продукт совместной полимеризации бутадиена со стиролом в водной эмульсии, применяется в качестве связующего или клеящего материала при облицовочных работах.

Физико-химические свойства латекса СКС-ЗОШР:

  • содержание сухого вещества, %, не менее 33;
  • температура желатинизации, °С, не выше 14;
  • содержание свободной щелочи, %, не более 0,15.

Характеристики полимерных клеящих материалов

Полимерные клеящие материалы выпускают в виде жидкостей порошков и пленок.

Жидкие клеи бывают двух типов. Первый тип клеевых составов представляет собой растворенные в органическом летучем растворителе (спирте или ацетоне) каучуки, смолы или производные целлюлозы. После испарения растворителя образуется твердое клеевое соединение. Второй тип клеевых составов - это водные растворы специально приготовленных для клеев смол. Такие растворы при правильном хранении не густеют в течение нескольких месяцев. Жидкие клеи содержат 40-70% твердого клеящего вещества.

Из жидких клеев самыми распространенными являются меламиноформальдегидные, фенолоформальдегидные, мочевиноформальдегидные, каучуковые, эпоксидные, поливинилацетатные, а также клеи с добавлением силиконов.

Клей КМЦ (натриевая соль карбоксиметилцеллюлозы) используется при изготовлении мастик и растворов, применяемых при .

Карбинольный клей (винилацетилен карболен) - это вязкая прозрачная жидкость светло-оранжевого цвета, обладающая высокой клеящей способностью. Поэтому его называют универсальным. Он способен склеивать различные материалы, даже такие, как бетон, камень, металл, дерево. Затвердевший карбинольный клей устойчив к воздействию масел, кислот, щелочей, бензина, ацетона и воды.

В качестве катализаторов для ускорения твердения карбинольного клея используются концентрированная азотная кислота или перекись бензоила. Последняя представляет собой взрывоопасный порошок, поэтому его следует хранить, оберегая от огня.

Карбинольный клей выпускается на основе карбинольного сиропа (100 мас.ч) двух составов: в 1-й добавляется в качестве отвердителя перекись бензоила (1-3 мас.ч.), во 2-й – концентрированную азотную кислоту (1-2 мас.ч.).

Карбинольный клей хранят при температуре 20°С и в темноте, так как под влиянием света он теряет клеящую способность.

Эпоксидный клей представляет собой прозрачную вязкую жидкость светло-коричневого цвета, обладающую высокой клеящейся способностью. Он применяется для склеивания камня, бетона, керамической плитк. Затвердевший шов эпоксидного клея устойчив к воздействию кислот, щелочей, растворителей, воды, а также к большим механическим нагрузкам. Отвердителями эпоксидной смолы служат полиэтиленполиамин или гексаметилендиамин, пластификатором – дибутилфтолат.

Полимерные материалы - это химические высокомолекулярные соединения, которые состоят из многочисленных маломолекулярных мономеров (звеньев) одинакового строения. Зачастую для изготовления полимеров используют следующие мономерные компоненты: этилен, винилхлорид, винилденхлорид, винилацетат, пропилен, метилметакрилат, тетрафторэтилен, стирол, мочевину, меламин, формальдегид, фенол. В данной статье мы подробно рассмотрим, что такое полимерные материалы, каковы их химические и физические свойства, классификация и виды.

Виды полимеров

Особенностью молекул данного материала является большая которая соответствует следующему значению: М>5*103. Соединения с меньшим уровнем этого параметра (М=500-5000) принято называть олигомерами. У низкомолекулярных соединений масса меньше 500. Различают следующие виды полимерных материалов: синтетические и природные. К последним принято относить натуральный каучук, слюду, шерсть, асбест, целлюлозу и т. д. Однако основное место занимают полимеры синтетического характера, которые получают в результате процесса химического синтеза из соединений низкомолекулярного уровня. В зависимости от метода изготовления высокомолекулярных материалов, различают полимеры, которые созданы или путем поликонденсации, или с помощью реакции присоединения.

Полимеризация

Этот процесс представляет собой объединение низкомолекулярных компонентов в высокомолекулярные с получением длинных цепей. Величина уровня полимеризации - это количество «меров» в молекулах данного состава. Чаще всего полимерные материалы содержат от тысячи до десяти тысяч их единиц. Путем полимеризации получают следующие часто применяемые соединения: полиэтилен, полипропилен, поливинилхлорид, политетрафторэтилен, полистирол, полибутадиен и др.

Поликонденсация

Данный процесс представляет собой ступенчатую реакцию, которая заключается в соединении или большого количества однотипных мономеров, или пары различных групп (А и Б) в поликонденсаторы (макромолекулы) с одновременным образованием следующих побочных продуктов: диоксида углерода, хлороводорода, аммиака, воды и др. При помощи поликонденсации получают силиконы, полисульфоны, поликарбонаты, аминопласты, фенопласты, полиэстеры, полиамиды и другие полимерные материалы.

Полиприсоединение

Под данным процессом понимают образование полимеров в результате реакций множественного присоединения мономерных компонентов, которые содержат предельные реакционные объединения, к мономерам непредельных групп (активные циклы или двойные связи). В отличие от поликонденсации, реакция полиприсоединения протекает без выделений побочных продуктов. Важнейшим процессом данной технологии считают отверждение и получение полиуретанов.

Классификация полимеров

По составу все полимерные материалы делятся на неорганические, органические и элементоорганические. Первые из них слюда, асбест, керамика и др.) не содержат атомарный углерод. Их основой являются оксиды алюминия, магния, кремния и т. д. Органические полимеры составляют наиболее обширный класс, они содержат атомы углерода, водорода, азота, серы, галогена и кислорода. Элементоорганические полимерные материалы - это соединения, которые в составе основных цепей имеют, кроме перечисленных, и атомы кремния, алюминия, титана и других элементов, способных сочетаться с органическими радикалами. В природе такие комбинации не возникают. Это исключительно синтетические полимеры. Характерными представителями этой группы являются соединения на кремнийорганической основе, главная цепь которых строится из атомов кислорода и кремния.

Для получения полимеров с необходимыми свойствами в технике зачастую используют не «чистые» вещества, а их сочетания с органическими или неорганическими компонентами. Хорошим примером служат полимерные строительные материалы: металлопласты, пластмассы, стеклопластики, полимербетоны.

Структура полимеров

Своеобразие свойств этих материалов обусловлено их структурой, которая, в свою очередь, делится на следующие виды: линейно-разветвленная, линейная, пространственная с большими молекулярными группами и весьма специфическими геометрическими строениями, а также лестничная. Рассмотрим вкратце каждую из них.

Полимерные материалы с линейно-разветвленной структурой, кроме основной цепи молекул, имеют боковые ответвления. К таким полимерам относятся полипропилен и полиизобутилен.

Материалы с линейной структурой имеют длинные зигзагообразные либо закрученные в спирали цепочки. Их макромолекулы прежде всего характеризуются повторениями участков в одной структурной группе звена либо химической единицы цепи. Полимеры с линейной структурой отличаются наличием весьма длинных макромолекул со значительным различием характера связей вдоль цепи и между ними. Имеются ввиду межмолекулярные и химические связи. Макромолекулы таких материалов весьма гибкие. И это свойство является основой полимерных цепей, которая приводит к качественно новым характеристикам: высокой эластичности, а также отсутствию хрупкости в затвердевшем состоянии.

А теперь узнаем, что такое полимерные материалы с пространственной структурой. Эти вещества образуют при объединении между собой макромолекул прочные химические связи в поперечном направлении. В результате получается сетчатая структура, у которой неоднородная либо пространственная основа сетки. Полимеры этого типа обладают большей теплостойкостью и жесткостью, чем линейные. Эти материалы являются основой многих конструкционных неметаллических веществ.

Молекулы полимерных материалов с лестничной структурой состоят из пары цепей, которые соединены химической связью. К ним относятся кремнийорганические полимеры, которые характеризуются повышенной жесткостью, термостойкостью, кроме того, они не взаимодействуют с органическими растворителями.

Фазовый состав полимеров

Данные материалы представляют собой системы, которые состоят из аморфных и кристаллических областей. Первая из них способствует снижению жесткости, делает полимер эластичным, то есть способным к большим деформациям обратимого характера. Кристаллическая фаза способствует увеличению их прочности, твердости, модуля упругости, а также других параметров, одновременно снижая молекулярную гибкость вещества. Отношение объема всех таких областей к общему объему называется степенью кристаллизации, где максимальный уровень (до 80%) имеют полипропилены, фторопласты, полиэтилены высокой плотности. Меньшим уровнем степени кристаллизации обладают поливинилхлориды, полиэтилены низкой плотности.

В зависимости от того, как ведут себя полимерные материалы при нагреве, их принято делить на термореактивные и термопластичные.

Термореактивные полимеры

Данные материалы первично имеют линейную структуру. При нагреве они размягчаются, однако в результате протекания в них химических реакций строение меняется на пространственное, и вещество превращается в твердое. В дальнейшем это качество сохраняется. На этом принципе построены полимерные Последующий их нагрев не размягчает вещество, а приводит только к его разложению. Готовая термореактивная смесь не растворяется и не плавится, поэтому недопустима ее повторная переработка. К этому виду материалов относятся эпоксидные кремнийорганические, феноло-формальдегидные и другие смолы.

Термопластичные полимеры

Данные материалы при нагреве сначала размягчаются и потом плавятся, а при последующем охлаждении затвердевают. Термопластичные полимеры при такой обработке не претерпевают химических изменений. Это делает данный процесс полностью обратимым. Вещества этого типа имеют линейно-разветвленную или линейную структуру макромолекул, между которыми действуют малые силы и совершенно нет химических связей. К ним относятся полиэтилены, полиамиды, полистиролы и др. Технология полимерных материалов термопластичного типа предусматривает их изготовление методом литья под давлением в водоохлажденных формах, прессования, экструзии, выдувания и другими способами.

Химические свойства

Полимеры могут перебывать в следующих состояниях: твердое, жидкое, аморфное, кристаллическое фазовое, а также высокоэластическое, вязкотекучее и стеклообразное деформационное. Широкое применение полимерных материалов обусловлено их высокой стойкостью к различным агрессивным средам, таким как концентрированные кислоты и щелочи. Они не подвержены воздействию Кроме того, с увеличением их молекулярной массы происходит снижение растворимости материала в органических растворителях. А полимеры, обладающие пространственной структурой, вообще не подвержены воздействию упомянутых жидкостей.

Физические свойства

Большинство полимеров являются диэлектриками, кроме того, они относятся к немагнитным материалам. Из всех используемых конструкционных веществ только они обладают наименьшей теплопроводностью и наибольшей теплоемкостью, а также тепловой усадкой (примерно в двадцать раз больше, чем у металла). Причиной потерь герметичности различными уплотнительными узлами при условиях низкой температуры является так называемое стеклование резины, а также резкое различие между коэффициентами расширения металлов и резин в застеклованном состоянии.

Механические свойства

Полимерные материалы отличаются широким диапазоном механических характеристик, которые сильно зависят от их структуры. Кроме этого параметра, большое влияние на механические свойства вещества могут оказать различные внешние факторы. К ним относятся: температура, частота, длительность или скорость нагружения, вид напряженного состояния, давление, характер окружающей среды, термообработка и др. Особенностью механических свойств полимерных материалов является их относительно высокая прочность при весьма малой жесткости (по сравнению с металлами).

Полимеры принято делить на твердые, модуль упругости которых соответствует Е=1-10 ГПа (волокна, пленки, пластмассы), и мягкие высокоэластичные вещества, модуль упругости которых составляет Е=1-10 МПа (резины). Закономерности и механизм разрушения тех и других различны.

Для полимерных материалов характерны ярко выраженная анизотропия свойств, а также снижение прочности, развитие ползучести при условии длительного нагружения. Вмести с этим они обладают довольно высоким сопротивлением усталости. По сравнению с металлами, они отличаются более резкой зависимостью механических свойств от температуры. Одной из главных характеристик полимерных материалов является деформируемость (податливость). По этому параметру в широком температурном интервале принято оценивать их основные эксплуатационные и технологические свойства.

Полимерные материалы для пола

Теперь рассмотрим один из вариантов практического применения полимеров, раскрывающего всю возможную гамму этих материалов. Эти вещества нашли широкое применение в строительстве и ремонтно-отделочных работах, в частности в покрытии полов. Огромная популярность объясняется характеристиками рассматриваемых веществ: они устойчивы к стиранию, малотеплопроводны, имеют незначительное водопоглощение, достаточно прочны и тверды, обладают высокими лакокрасочными качествами. Производство полимерных материалов можно разделить условно на три группы: линолеумы (рулонные), плиточные изделия и смеси для устройства бесшовных полов. Теперь вкратце рассмотрим каждый из них.

Линолеумы изготавливают на основе разных типов наполнителей и полимеров. В их состав также могут входить пластификаторы, технологические добавки и пигменты. В зависимости от типа полимерного материала, различают полиэфирные (глифталевые), поливинилхлоридные, резиновые, коллоксилиновые и другие покрытия. Кроме того, по структуре они делятся на безосновные и со звуко-, теплоизолирующей основой, однослойные и многослойные, с гладкой, ворсистой и рифленой поверхностью, а также одно- и многоцветные.

Материалы для бесшовных полов являются наиболее удобными и гигиеничными в эксплуатации, они обладают высокой прочностью. Эти смеси принято делить на полимерцемент, полимербетон и поливинилацетат.

Полимер

Полимер - высокомолекулярное соединение, вещество с большой молекулярной массой (от нескольких тысяч до нескольких миллионов. ), состоит из большого числа повторяющихся одинаковых или различных по строению атомных группировок - составных звеньев , соединенных между собой химическими или координационными связями в длинные линейные (например, целлюлоза) или разветвленные (например, амилопектин) цепи, а также пространственные трёхмерные структуры.

Часто в его строении можно выделить мономер - повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения, называют например поливинилхлорид (-СН2-СНСl-) n , каучук натуральный и др. Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называют сополимерами .

Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки , нуклеиновые кислоты , полисахариды , каучук и другие органические вещества . В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров . Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических превращений. Названия полимеров образуются из названия мономера с приставкой поли- : поли этилен, поли пропилен, поли винилацетат...

Благодаря ценным свойствам полимеры применяются в машиностроении , текстильной промышленности , сельском хозяйстве и медицине , автомобиле- и судостроении, в быту (текстильные и кожевенные изделия, посуда, клей и лаки , украшения и другие предметы). На основании высокомолекулярных соединений изготовляют резины , волокна , пластмассы , пленки и лакокрасочные покрытия. Все ткани живых организмов представляют высокомолекулярные соединения.

Наука о полимерах

Синтетические полимеры. Искусственные полимерные материалы

Человек давно использует природные полимерные материалы в своей жизни. Это кожа , меха , шерсть , шелк , хлопок и т.п., используемые для изготовления одежды, различные связующие (цемент , известь , глина), образующие при соответствующей обработке трехмерные полимерные тела, широко используемые как строительные материалы . Однако промышленное производство цепных полимеров началось в начале XX в., хотя предпосылки для этого создавались ранее.

Практически сразу же промышленное производство полимеров развивалось в двух направлениях – путем переработки природных органических полимеров в искусственные полимерные материалы и путем получения синтетических полимеров из органических низкомолекулярных соединений.

В первом случае крупнотоннажное производство базируется на целлюлозе . Первый полимерный материал из физически модифицированной целлюлозы – целлулоид – был получен еще в начале XX в. Крупномасштабное производство простых и сложных эфиров целлюлозы было организовано до и после Второй мировой войны и существует до настоящего времени. На их основе производят пленки, волокна , лакокрасочные материалы и загустители . Необходимо отметить, что развитие кино и фотографии оказалось возможным лишь благодаря появлению прозрачной пленки из нитроцеллюлозы .

Производство синтетических полимеров началось в 1906 г., когда Л. Бакеланд запатентовал так называемую бакелитовую смолу – продукт конденсации фенола и формальдегида , превращающийся при нагревании в трехмерный полимер. В течение десятилетий он применялся для изготовления корпусов электротехнических приборов, аккумуляторов , телевизоров , розеток и т.п., а в настоящее время чаще используется как связующее и адгезивное вещество.

Классификация полимеров

По химическому составу все полимеры подразделяются на органические, элементоорганические, неорганические.

  • Органические полимеры. Образованы с участием органических радикалов (CH3, C6H5, CH2). Это смолы и каучуки .
  • Элементоорганические полимеры. Они содержат в основной цепи органических радикалов неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами. В природе их нет. Искусственно полученный представитель – кремнийорганические соединения.
  • Неорганические полимеры. Их основу составляют оксиды Si, Al, Mg, Ca и др. Углеводородный скелет отсутствует. К ним относятся керамика , слюда , асбест .

Следует отметить, что в технических материалах часто используют сочетания отдельных групп полимеров. Это композиционные материалы (например, стеклопластики).

По форме макромолекул полимеры делят на линейные, разветвленные, ленточные, пространственные, плоские.

По фазовому составу полимеры подразделяются на аморфные и кристаллические.

Аморфные полимеры однофазны и построены из цепных молекул, собранных в пачки. Пачки могут перемещаться относительно других элементов.

Кристаллические полимеры образуются тогда, когда их макромолекулы достаточно гибкие и образуют структуру.

По полярности полимеры подразделяют на полярные и неполярные. Полярность определяется наличием в их составе диполей – молекул с разобщенным распределением положительных и отрицательных зарядов. В неполярных полимерах дипольные моменты связей атомов взаимно компенсируются.

По отношению к нагреву полимеры подразделяют на термопластичные и термореактивные.

Природные органические полимеры

Природные органические полимеры образуются в растительных и животных организмах. Важнейшими из них являются полисахариды , белки и нуклеиновые кислоты , из которых в значительной степени состоят тела растений и животных и которые обеспечивают само функционирование жизни на Земле. Считается, что решающим этапом в возникновении жизни на Земле явилось образование из простых органических молекул более сложных – высокомолекулярных.

Особенности полимеров

Особые механические свойства:

  • эластичность - способность к высоким обратимым деформациям при относительно небольшой нагрузке (каучуки);
  • малая хрупкость стеклообразных и кристаллических полимеров (пластмассы, органическое стекло);
  • способность макромолекул к ориентации под действием направленного механического поля (используется при изготовлении волокон и плёнок).

Особенности растворов полимеров:

  • высокая вязкость раствора при малой концентрации полимера;
  • растворение полимера происходит через стадию набухания.

Особые химические свойства:

  • способность резко изменять свои физико-механические свойства под действием малых количеств реагента (вулканизация каучука, дубление кож и т. п.).

Особые свойства полимеров объясняются не только большой молекулярной массой, но и тем, что макромолекулы имеют цепное строение и обладают уникальным для неживой природы свойством - гибкостью.

Не многим из нас, участников полимерного бизнеса, в пору студенческих лет выпала честь получить профессиональное образование по профилю переработки вторичных полимеров. Вместе с тем, сфера «доходов на отходах» всегда привлекала предпринимателей как реальная возможность извлечь деньги. Сектор по-прежнему развит достаточно слабо, особенно это касается информационной поддержки бизнеса. Начинающим специалистам зачастую приходится сложно осваивать теоретическую базу знаний о химии полимерных материалов. Информации либо крайне мало, либо она описана в сложных технических и химических терминах. В нашей практике достаточно часто встречаются партнеры и начинающие игроки, которые жадно задают вопросы о том, что нам хорошо известно. И мы готовы делиться знаниями, поскольку тернистый путь от изучения азов до комплексных поставок и консультаций в сфере сырья и оборудования мы прошли с самого начала и самостоятельно.

В этой статье речь пойдёт о самых простых и одновременно важных понятиях, которые как раз и описаны в литературе, порой, сложнее всего остального.

Что такое полимеры?

Полимеры, или полимерные материалы - это огромная группа схожих по строению веществ. Такое строение присуще и живому и неживому. Если рассматривать полимер под микроскопом, то мы увидим красивую структуру повторяющихся фрагментов - мономеров - крепко связанных друг с другом. Иными словами, полимер - это способ организации молекулы в виде многократного повторения определенных звеньев по сложному химическому алгоритму. Пластмассы - это одна из разновидностей полимеров.

Откуда берутся полимеры?

По происхождению все полимеры можно разделить на три большие группы: природные, искусственные и синтетические.

Природные полимеры - это продукт жизнедеятельности растений и животных. Они в большом количестве содержатся в шерсти, древесине, коже. Например, знакомый всем крахмал - это полимер, продукт жизнедеятельности картофеля. Полимерную структуру содержит в себе и человек. Белок - основа жизни - представляет собой именно полимерную, повторяющуюся структуру. Из курса школьной биологии многим нравилось рассматривать цепочку ДНК: разноцветные нуклеотиды, хранящие в себе генетическую информацию о целом поколении рода, объединенные в цепь, которая в полном составе способна рассказать многое о владельце.

Искусственные полимеры - это модификация природных. Как правило, природные полимеры проходят процедуру очистки и насыщения дополнительными свойствами, после чего их можно смело отнести к классу искусственных. Продуктом такой переработки является, например, каучук модифицированный и латекса (смолы).

Синтетические полимеры - отдельная категория полимеров. Это двигатели технической революции. Такие материалы не имеют аналогов в природе, их получают в лабораториях при сложных условиях и химических реакциях превращения. Основа синтетических полимеров - нефтегазовая переработка, синтез углеводородов. Именно синтетические полимеры и совершили революцию орудий труда, обратив 21 век, по праву, в век высокой химии, век полимеров и пластмасс. Именно они открыли нам двери в интересный и такой полезный бизнес по переработке вторичных материалов.

Так откуда же взялись синтетические полимеры, если они не имеют аналогов в природе? Рассмотрим поэтапно путь гранулы от сырой нефти до готового к переработке сырья.

Этап

Процесс

Описание

Полезный результат

Отходы

Добыча нефти и газа

Сопровождается сгоранием в факелах попутных нефтяных газов - отходов нефтяных и газовых производств.

Есть 2 варианта действий: загрязнять этими газами атмосферу или использовать их для дальнейших превращений.

Первичный сбор нефти и газа

Отработанные попутные газы, которые по трубопроводам поступают на следующий этап.

Газопереработка

Газоперерабатывающие заводы покупают попутные газы и перерабатывают до получения специального очищенного сырья - ШФЛУ (широкая фракция легких углеводородов). Это ещё не полимеры.

Сухой газ, поступающий в конфорки наших домой и ТЭЦ

Остаточная смесь газов широкой фракции после очистки и переработки

Газофракционирование

Разделение ШФЛУ на ценные фракции до жидких однородных газов

Пропан, бутан, пентан, изобутан

Сжиженные углеводородные газы

Пиролиз

Пиролизная установка получает сжиженные углеводородные газы и нагревает их до момента, пока они не распадутся на мелкие звенья, а именно, пока не выделятся ценные газы, например, пропилен или этилен.
Это мономеры - сырье для полимеров.

Мономеры этилена и пропилена

Мономеры этилена и пропилена

Производство первичных полимеров

В анклавах или трубчатых реакторах происходят химические реакции полимеризации, в которых мономеры - кирпичики больших звеньев - при помощи катализаторов превращаются в полимеры

Первичные полимеры

Первичные полимеры

Именно так на свет появляется первичное сырьё, точнее, сырьё с заводов производителей. Таких заводов не очень много и у них, как правило, колоссальная выработка, и это неудивительно: этих объемов должно хватать на всю нашу страну и ещё немного для экспорта нашим партнерам за рубежом. Соответственно, вторичное сырьё -это сырьё, которое уже успело послужить человеку и проживает свою вторую жизнь в виде вторичной гранулы, ожидая следующей переработки. Количество таких переработок может быть очень большим, потому что синтетические полимеры - удивительно стабильные вещества.

Что такое термопласт?

Тот факт, что все пластмассовые изделия изначально были гранулами, а впоследствии приняли какую-либо форму изделия, говорит о том, что гранулы пережили технологический процесс превращения. Мы назовем это переработкой, и будем правы.

Методов переработки полимеров множество, но в основе все они сводятся к тому, что гранулы в специализированном оборудовании нагревают до высокой температуры, перемешивают до однородной массы, придают этой массе нужную форму и остужают. Сформованное таким образом изделие при этом не особенно теряет в качестве, полимеры стабильные вещества. Однако не все полимеры пригодны для подобной переработки. Поэтому прямо сейчас мы введем классификацию полимеров по их пригодности к вторичной переработке. Эта классификация очень проста

Те, что пригодны, мы назовём термопластами, а те, что непригодны-реактопластами. Интересуют нас именно термопласты , потому что на полимерах, которые нельзя переработать, нечего и заработать.

Итак, термопласты, или термопластичные полимеры, - это полимеры, которые при нагревании могут спокойно нагреться, расплавиться, не растеряв своих ценных химических свойств, а вот физически способны принять любую форму при остывании, хоть седло от унитаза, хоть крышка (от него же). Именно термопластичные полимеры принимают участие в бесконечных циклах переработки пластмасс. Это явление в производстве называют рециклинг. А вот реактопласты повторную температурную обработку пережить не смогут. При повторном нагревании они полностью разрушаются. Тем не менее, реактопласты служат человеку в виде клеевых основ, мастики и прочих химических товаров.

Вместо итогов

На практике, понимая два эти простые и, одновременно, сложные понятия, нам не составит особого труда расшифровать научные определения представителей полимеров: полипропилен и полиэтилен . В любой литературе будет написано как-то так:

Полипропилен (ПП) - это синтетический термопластичный полимер, продукт полимеризации пропилена.

Полиэтилен (ПЭ) - это синтетический термопластичный полимер, продукт полимеризации этилена.

Сложная формулировка может звучать значительно проще. Теперь мы знаем, что означает «синтетический», «термопластичный», представляет себе, что такое мономер. Непонятно только, что такое полимеризация. Полимеризация - это химическая реакция «превращения» мономера в полимер.

В нашей работе важно понимать, что такое полимерное сырьё, и какие у него особенности, характеристики и свойства. Этим вопросам посвящены многие наши статьи, но начало обучения лежит именно здесь. В базовых понятиях и терминологии такой сложной и такой интересной химии полимеров.

С уважением, генеральный директор ООО «Мировое оборудование»

Александра Александровна Клемина

Полимеры, или макромолекулы - это очень большие молекулы, образованные связями многих молекул малого размера, которые называются составными звеньями, или мономерами. Молекулы настолько велики, что их свойства не изменяются существенным образом при добавлении или удалении нескольких таких составных звеньев. Термин "полимерные материалы" является обобщающим. Он объединяет три обширных группы синтетических пластиков, а именно: полимеры; пластмассы и их морфологическую разновидность - полимерные композиционные материалы (ПКМ) или, как их еще называют, армированные пластики. Общее для перечисленных групп то, что их обязательной частью является полимерная составляющая, которая и определяет основные термодеформационные и технологические свойства материала. Полимерная составляющая представляет собой органическое высокомолекулярное вещество, полученное в результате химической реакции между молекулами исходных низкомолекулярных веществ - мономеров.

Полимерами принято называть высокомолекулярные вещества (гомополимеры) с введенными в них добавками, а именно стабилизаторами, ингибиторами, пластификаторами, смазками, антирадами и т. д. Физически полимеры являются гомофазными материалами, они сохраняют все присущие гомополимерам физико-химические особенности.

Пластмассами называются композиционные материалы на основе полимеров, содержащие дисперсные или коротковолокнистые наполнители, пигменты и иные сыпучие компоненты. Наполнители не образуют непрерывной фазы. Они (дисперсная среда) располагаются в полимерной матрице (дисперсионная среда). Физически пластмассы представляют собой гетерофазные материалы с изотропными (одинаковыми во всех направлениях) физическими макросвойствами.

Пластмассы могут быть разделены на две основные группы - термопластические и термореактивные. Термопластические - это те, которые после формирования могут быть расплавлены и снова сформованы; термореактивные, сформованные раз, уже не плавятся и не могут принять другую форму под воздействием температуры и давления. Почти все пластмассы, используемые в упаковках, относятся к термопластическим, например, полиэтилен и полипропилен (члены семейства полиолефинов), полистирол, поливинилхлорид, полиэтилентерефталат, найлон (капрон), поликарбонат, поливинилацетат, поливиниловый спирт и другие.

Пластмассы также можно располагать по категориям в зависимости от метода, который используется для их полимеризации, на полимеры, полученные присоединением к поликонденсацией. Полимеры, полученные присоединением, производятся с помощью механизма, который включает либо свободные радикалы, либо ионы, по которому малые молекулы быстро присоединяются к растущей цепи, без образования сопутствующих молекул. Поликонденсационные полимеры производятся с помощью реакции функциональных групп в молекулах друг с другом, так что постадийно образуется длинная цепь полимера, и обычно происходит образование низкомолекулярного сопутствующего продукта, например воды, во время каждой стадии реакции. Большинство упаковочных полимеров, включая полиолефины, поливинилхлорид и полистирол - это полимеры присоединения.

Химические и физические свойства пластиков обусловлены их химическим составом, средней молекулярной массой и распределением молекулярной массы, историей обработки (и использования), и наличием добавок.

Полимерные армированные материалы являются разновидностью пластмасс. Они отличаются тем, что в них используются не дисперсные, а армирующие, то есть усиливающие наполнители (волокна, ткани, ленты, войлок, монокристаллы), образующие в ПКМ самостоятельную непрерывную фазу. Отдельные разновидности таких ПКМ называют слоистыми пластиками. Такая морфология позволяет получить пластики с весьма высокими деформационно-прочностными, усталостными, электрофизическими, акустическими и иными целевыми характеристиками, соответствующими самым высоким современным требованиям.

Реакция полимеризации - это последовательное присоединение молекул ненасыщенных соединений друг к другу с образованием высокомолекулярного продукта - полимера. Молекулы алкена, вступающие в реакцию полимеризации, называются мономерами. Число элементарных звеньев, повторяющихся в макромолекуле, называется степенью полимеризации (обозначается п). В зависимости от степени полимеризации из одних и тех же мономеров можно получать вещества с различными свойствами. Так, полиэтилен с короткими цепями (n = 20) является жидкостью, обладающей смазочными свойствами. Полиэтилен с длиной цепи в 1500-2000 звеньев представляет собой твердый, но гибкий пластический материал, из которого можно получать пленки, изготовлять бутылки и другую посуду, эластичные трубы и т. д. Наконец, полиэтилен с длиной цели в 5-6 тыс. звеньев является твердым веществом, из которого можно готовить литые изделия, жесткие трубы, прочные нити.

Если в реакции полимеризации принимает участие небольшое число молекул, то образуются низкомолекулярные вещества, например димеры, тримеры и т. д. Условия протекания реакций полимеризации весьма различные. В некоторых случаях необходимы катализаторы и высокое давление. Но главным фактором является строение молекулы мономера. В реакцию полимеризации вступают непредельные (ненасыщенные) соединения за счет разрыва кратных связей. Структурные формулы полимеров кратко записывают так: формулу элементарного звена заключают в скобки и справа внизу ставят букву п. Например, структурная формула полиэтилена (-СН2-СН2-)n. Легко заключить, что название полимера слагается из названия мономера и приставки поли-, например полиэтилен, поливинилхлорид, полистирол и т. д.

Полимеризация - это цепная реакция, и, для того чтобы она началась, необходимо активировать молекулы мономера с помощью так называемых инициаторов. Такими инициаторами реакции могут быть свободные радикалы или ионы (катионы, анионы). В зависимости от природы инициатора различают радикальный, катионный или анионный механизмы полимеризации.

Наиболее распространенными полимерами углеводородной природы являются полиэтилен и полипропилен.

Полиэтилен получают полимеризацией этилена: Полипропилен получают стереоспецифической полимеризацией пропилена (пропена). Стереоспецифическая полимеризация - это процесс получения полимера со строго упорядоченным пространственным строением. К полимеризации способны многие другие соединения - производные этилена, имеющие общую формулу СН2==СН-X, где Х - различные атомы или группы атомов.

Виды полимеров:

Полиолефины - это класс полимеров одинаковой химической природы (химическая формула -(СН2)-n) с разнообразным пространственным строением молекулярных цепей, включающий в себя полиэтилен и полипропилен. Кстати сказать, все углеводы, к примеру, природный газ, сахар, парафин и дерево имеют схожее химическое строение. Всего в мире ежегодно производиться 150 млн. т. полимеров, а полеолефины составляют примерно 60% от этого количества. В будущем полиолефины будут окружать нас в гораздо большей степени, чем сегодня, поэтому полезно присмотреться к ним повнимательнее.

Комплекс свойств полиолефинов, в том числе такие, как стойкость к ультрафиолету, окислителям, к разрыву, протыканию, усадке при нагреве и к раздиру, меняется в очень широких пределах в зависимости от степени ориентационной вытяжки молекул в процессе получения полимерных материалов и изделий.

Особенно следует подчеркнуть, что полеолефины экологически чище большинства применяемых человеком материалов. При производстве, транспортировке и обработке стекла, дерева и бумаги, бетона и металла используется много энергии, при выработке которой неизбежно загрязняется окружающая среда. При утилизации традиционных материалов также выделяются вредные вещества и затрачивается энергия. Полиолефины производятся и утилизуются без выделения вредных веществ и при минимальных затаратах энергии, причем при сжигании полиолефинов выделяется большое количество чистого тепла с побочными продуктами в виде водяного пара и углекислого газа. Полиэтилен

Около 60% всех пластиков, используемых для упаковки- это полиэтилен, главным образом благодаря его низкой стоимости, но также благодаря его отличным свойствам для многих областей применения. Полиэтилен высокой плотности (ПЭНД - низкого давления) имеет самую простую структуру из всех пластиков, он состоит из повторяющихся звеньев этилена. -(CH2CH2)n- полиэтилен высокой плотности. Полиэтилен низкой плотности (ПЭВД - высокого давления) имеют ту же химическую формулу, но отличается тем, что его структура разветвленная. -(CH2CHR) n- полиэтилен низкой плотности Где R может быть -H, -(CH2)nCH3, или более сложной структурой с вторичным разветвлением.

Полиэтилен, благодаря своему простому химическому строению, легко складывается в кристаллическую решетку, и, следовательно, имеет тенденцию к высокой степени кристалличности. Разветвление цепи препятствует этой способности к кристаллизации, что приводит к меньшему числу молекул на единицу объема, и, следовательно, меньшей плотности.

ПЭВД - полиэтилен высокого давления. Пластичен, слегка матовый, воскообразный на ощупь, перерабатывается методом экструзии в рукавную пленку с раздувом или в плоскую пленку через плоскощелевую головку и охлаждаемый валик. Пленка из ПЭВД прочна при растяжении и сжатии, стойка к удару и раздиру, прочна при низких температурах. Имеет особенность - довольно низкая температура размягчения (около 100 градусов Цельсия).

ПЭНД - полиэтилен низкого давления. Пленка из ПЭНД - жесткая, прочная, менее воскообразная на ощупь по сравнению с пленками ПЭВД. Получается экструзией рукава с раздувом или экструзией плоского рукава. Температура размягчения 121°С позволяет производить стерилизацию паром. Морозостойкость этих пленок такая же, как и у пленок из ПЭВД. Устойчивость к растяжению и сжатию - высокая, а сопротивление к удару и раздиру меньше, чем у пленок из ПЭВД. Пленки из ПЭНД - это прекрасная преграда влаге. Стойки к жирам, маслам. "Шуршащий" пакет-майка ("шуршавчик"), в который вы упаковываете покупки, изготовлен именно из ПЭНД.

Существует два основных типа ПЭНД. Более "старый" тип, произведенный первым в 1930-х годах, полимеризуется при высоких температурах и давлениях, условиях, которые достаточно энергетичны, чтобы обеспечить заметную встречаемость реакций по цепному механизму, которые приводят к образованию разветвления, как с длинными, так и с короткими цепями. Этот тип ПЭНД иногда называется полиэтиленом высокого давления (ПВД, ВД-ПЭНД, из-за высокого давления), если есть необходимость отличать его от линейного полиэтилена низкого давления, более "молодого" типа ПЭВД. При комнатной температуры полиэтилен - довольно мягкий и гибкий материал. Он хорошо сохраняет эту гибкость в условиях холода, так что применим в упаковке замороженных пищевых продуктов. Однако при повышенных температурах, таких как 100 °С, он становится слишком мягким для ряда применений. ПЭНД отличается более высокой хрупкостью и температурой размягчения, чем ПЭВД, но все же не является подходящим контейнеров горячего заполнения.

Около 30% всех пластиков, используемых для упаковки- это ПЭНД. Это наиболее широко используемый пластик для бутылок, из-за его низкой стоимости, простоты формования, и отличных эксплуатационных качеств, для многих областей применения. В его естественной форме ПЭНД имеет молочно-белый, полупрозрачный вид, и таким образом, не подходит для областей применения, где требуется исключительная прозрачность. Один недостаток использования ПЭНД в некоторых из областей применения- его тенденция к растрескиванию под напряжением при взаимодействии внешней среды, определяемая как разрушение пластикового контейнера при условиях одновременного напряжения и соприкосновения с продуктом, что в отдельности не приводит к разрушению. Растрескивание под напряжением при взаимодействии внешней срды в полиэтилене соотносится с кристалличностью полимера.

ПЭВД- это наиболее широко применяемый упаковочный полимер, соответствующий примерно одной трети всех упаковочных пластиков. Из-за его низкой кристалличности, это более мягкий, более гибкий материал, чем ПЭНД. Это предпочитаемый материал для пленок и сумок, из-за его низкой стоимости. ПЭВД отличается лучшей прозрачностью, чем ПЭНД, но все же не обладает кристальной чистотой, которая желательна для некоторых областей применения упаковок.

ПП - полипропилен. Прекрасная прозрачность (при быстром охлаждении в процессе формообразования), высокая температура плавления, химическая и водостойкость. ПП пропускает водяные пары, что делает его незаменимым для "противозапотевающей" упаковки продуктов питания (хлеба, зелени, бакалеи), а также в строительстве для гидро-ветроизоляции. ПП чувствителен к кислороду и окислителям. Перерабатывается методом экструзии с раздувом или через плоскощелевую головку с поливом на барабан или охлаждением в водяной бане. Имеет хорошую прозрачность и блеск, высокую химическую стойкость, особенно к маслам и жирам, не растрескивается под воздействием окружающей среды.

ПВХ - поливинилхлорид. В чистом виде применяется редко из-за хрупкости и неэлостичности. Недорог. Может перерабатываться в пленку методом экструзии с раздувом, либо плоскощелевой экструзии. Расплав высоковязкий. ПВХ термически нестабилен и коррозионно активен. При перегреве и горении выделяет высокотоксичное соединение хлора - диоксин. Широко распространился в 60-70е годы. Вытесняется более экологичным полипропиленом.

Идентификация полимеров

У потребителей полимерных пленок очень часто возникает практическая задача по распознаванию природы полимерных материалов, из которых они изготовлены. Основные свойства полимерных материалов, как хорошо известно, определяются составом и структурой их макромолекулярных цепей. Отсюда ясно, что для идентификации полимерных пленок в первом приближении может быть достаточной оценка функциональных групп, входящих в состав макромолекул. Некоторые полимеры благодаря наличию гидроксильных групп (-ОН) тяготеют к молекулам воды. Это объясняет высокую гигроскопичность, например, целлюлозных пленок и заметное изменение их эксплуатационных характеристик при увлажнении. В других полимерах (полиэтилентерефталат, полиэтилены, полипропилен и т.п.) такие группы отсутствуют вообще, что объясняет их достаточно хорошую водостойкость.

Наличие тех или иных функциональных групп в полимере может быть определено на основе существующих и научно обоснованных инструментальных методов исследования. Однако, практическая реализация этих методов всегда сопряжена с относительно большими временными затратами и обусловлена наличием соответствующих видов достаточно дорогостоящей испытательной аппаратуры, требующей соответствующей квалификации для ее использования. Вместе с тем, существуют достаточно простые и "быстрые" практические способы распознавания природы полимерных пленок. Эти способы основаны на том, что полимерные пленки из различных полимерных материалов отличаются друг от друга по своим внешним признакам, физико-механическим свойствам, а также по отношению к нагреванию, характеру их горения и растворимости в органических и неорганических растворителях.

Во многих случаях природу полимерных материалов, из которых изготовлены полимерные пленки, можно установить по внешним признакам, при изучении которых особое внимание следует обратить на следующие особенности: состояние поверхности, цвет, блеск, прозрачность, жесткость и эластичность, стойкость к раздиру и др. Например, неориентированные пленки из полиэтиленов, полипропилена и поливинилхлорида легко растягиваются. Пленки из полиамида, ацетата целлюлозы, полистирола, ориентированных полиэтиленов, полипропилена, поливинилхлорида растягиваются плохо. Пленки из ацетата целлюлозы нестойки к раздиру, легко расщепляются в направлении, перпендикулярном их ориентации, а также шуршат при их сминании. Более стойкие к раздиру полиамидные и лавсановые (полиэтилентерефталатные) пленки, которые также шуршат при сминании. В то же время пленки из полиэтилена низкой плотности, пластифицированного поливинилхлорида не шуршат при сминании и обладают высокой стойкостью к раздиру. Результаты изучения внешних признаков исследуемой полимерной пленки следует сравнить с характерными признаками, приведенными в табл. 1, после чего уже можно сделать некоторые предварительные выводы.

Таблица 1. Внешние признаки

Вид полимера

Механические признаки

Состояние поверхности на ощупь

Цвет

Прозрачность

Блеск

Мягкая, эластичная, стойкая к раздиру

Мягкая, гладкая

Бесцветная

Прозрачная

Слегка маслянистая, гладкая, сладошуршащая

Бесцветная

Полупрозрачная

Жестковатая, слегка эластичная, стойкая к раздиру

Сухая, гладкая

Бесцветная

Полупрозрачная или прозрачная

Жестковатая, стойкая к раздиру

Сухая, гладкая

Бесцветная

Прозрачная

Мягкая, стойкая к раздиру

Сухая, гладкая

Бесцветная

Прозрачная

Жесткая, стойкая к раздиру

Бесцветная

Прозрачная

Сухая, гладкая

Бесцветная или светло-желтая

Полупрозрачная

Жесткая, слабо стойкая к раздиру

Сухая, гладкая, сильно шуршащая

Бесцветная или с голубоватым оттенком

Прозрачная

Жесткая, слабо стойкая к раздиру

Сухая, гладкая, сильно шуршащая

Бесцветная, с желтоватым или голубоватым оттенком

Высокопрозрачная

Жесткая, не стойкая к раздиру

Сухая, гладкая

Бесцветная

Высокопрозрачная

Целлофан

Жесткая, не стойкая к раздиру

Сухая, гладкая

Бесцветная

Высокопрозрачная


Однако, как нетрудно уяснить из анализа данных, приведенных в табл. 2, не всегда по внешним признакам можно однозначно установит природу полимера, из которого изготовлена пленка. В этом случае, необходимо попытаться количественно оценить какие-нибудь физико-механические характеристики имеющегося образца полимерной пленки. Как видно, например, из данных, приведенных в табл. 2, плотность некоторых полимерных материалов (ПЭНП, ПЭВП, ПП) меньше единицы, а, следовательно, образцы этих пленок должны "плавать" в воде. С тем, чтобы уточнить вид полимерного материала, из которого изготовлена пленка, следует определить плотность имеющегося образца путем измерения его веса и вычисления или измерения его объема. Уточнению природы полимерных материалов способствуют и экспериментальные данные по таким их физико-механическим характеристикам как предел прочности и относительное удлинение при одноосном растяжении, а также температура плавления (табл. 2). Кроме того, как видно из анализа данных, приведенных в табл. 2, проницаемость полимерных пленок по отношению к различным средам также существенно зависит от вида материала, из которого они изготовлены.

Таблица 2. Физико-механические характеристики при 20°C

Вид полимеров

Плотность кг/м 3

Прочность при разрыве, МПа

Относительное удлинение при разрыве, %

Проницаемость по водяным парам, г/м 2 за 24 часа

Проницаемость по кислоробу, см 3 /(м 2 хатм) за 24 часа

Проницаемость по СО 2 , см 3 /(м 2 хатм) за 24 часа

Температура плавления, 0 С

Целлофан


Помимо отличительных особенностей в физико-механических характеристиках следует отметить и существующие различия в характерных признаках различных полимеров при их горении. Этот факт позволяет использовать на практике так называемый термический метод идентификации полимерных пленок. Он заключается в том, что образец пленки поджигают и выдерживают в открытом пламени в течение 5-10 секунд, фиксируя при этом следующие свойства: способность к горению и его характер, цвет и характер пламени, запах продуктов горения и др. Характерные признаки горения наиболее отчетливо наблюдаются в момент поджигания образцов. Для установления вида полимерного материала, из которого изготовлена пленка, необходимо сравнить результаты проведенного испытания с данными о характерных особенностях поведения полимеров при горении, приведенными в табл. 3.

Таблица 3. Характеристики горения. Химическая стойкость

Вид полимера

Горючесть

Окраска пламени

Запах продуктов горения

Хим. стойкость к кислотам

Хим. стойкость к щелочам

Внутри синеватая, без копоти

Горящего парафина

Отличная

Горит в пламени и при удалении

Внутри синеватая, без копоти

Горящего парафина

Отличная

Горит в пламени и при удалении

Внутри синеватая, без копоти

Горящего парафина

Отличная

Зеленоватая с копотью

Хдористого водорода

Трудно воспламеняется и гаснет

Зеленоватая с копотью

Хлористого водорода

Отличная

Отличная

Загорается и горит вне пламени

Желтоватая с сильной копотью

Сладковатый, неприятный

Отличная

Горит и самозатухает

Голубая, желтоватая по краям

Жженого рога или пера

Трудно воспламеняется и гаснет

Светящаяся

Сладковатый

Отличная

Отличная

Трудно воспламеняется и гаснет

Желтоватая с копотью

Жженой бумаги

Горит в пламени

Искрящаяся

Уксусной кислоты

Целлофан

Горит в пламени

Жженой бумаги


Как видно из данных, приведенных в табл. 3, по характеру горения и запаху продуктов горения полиолефины (полиэтилены и полипропилен) напоминают парафин. Это вполне понятно, поскольку элементарный химический состав этих веществ один и тот же. Отсюда возникает сложность в различении полиэтиленов и полипропилена. Однако при определенном навыке можно отличить полипропилен по более резким запахам продуктов горения с оттенками жженой резины или горящего сургуча.

Таким образом, результаты комплексной оценки отдельных свойств полимерных пленок в соответствии с изложенными выше методами позволяют в большинстве случаев достаточно надежно установить вид полимерного материала, из которого изготовлены исследованные образцы. При возникающих затруднениях в определении природы полимерных материалов, из которых изготовлены пленки, необходимо провести дополнительные исследования их свойств химическими методами. Для этого образцы могут быть подвергнуты термическому разложению (пиролизу), при этом в продуктах деструкции определяется наличие характерных атомов (азота, хлора, кремния и т.п.) или групп атомов (фенола, нитрогрупп и т.п.), склонных к специфическим реакциям, в результате которых обнаруживается вполне определенный индикаторный эффект. Изложенные выше практические методы определения вида полимерных материалов, из которых изготовлены полимерные пленки, носят в известной степени субъективный характер, а, следовательно, не могут гарантировать их сто процентной идентификации. Если такая необходимость все же возникает, то следует воспользоваться услугами специальных испытательных лабораторий, компетентность которых подтверждена соответствующими аттестационными документами.

Показатель текучести расплава

Показатель текучести расплава полимерного материала это масса полимера в граммах, выдавливаемая через капилляр при определенной температуре и определенном перепаде давления за 10 минут. Определение величины показателя текучести расплава производят на специальных приборах, называемых капиллярными вискозиметрами. При этом размеры капилляра стандартизованы: длина 8,000±0,025 мм; диаметр 2,095±0,005 мм; внутренний диаметр цилиндра вискозиметра составляет 9,54±0,016 мм. Не целочисленные значения размеров капилляров связанны с тем, что впервые методика определения показателя текучести расплава появилась в странах с английской системой мер. Условия, рекомендуемые для определения показателя текучести расплава, регламентируются соответствующими стандартами. ГОСТ 11645-65 рекомендует нагрузки 2,16 кг, 5 кг и 10 кг и температуры, кратные 10°C. ASTM 1238-62T (США) рекомендует температуры от 125°C до 275°C и нагрузки от 0,325 кг до 21,6 кг. Наиболее часто показатель текучести расплава определяют при температуре 190°C и нагрузке 2,16 кг.

Величина показателя текучести для различных полимерных материалов определяется при различных нагрузках и температурах. Поэтому надо иметь в виду, что абсолютные величины показателя текучести сравнимы лишь для одного и того же материала. Так, например, можно сравнивать величину показателя текучести расплава полиэтилена низкой плотности различных марок. Сравнение же величин показателей текучести полиэтилена высокой и низкой плотности не дает возможности непосредственно сопоставить текучесть обоих материалов. Поскольку первый определяется при нагрузке в 5 кг, а второй при нагрузке в 2,16 кг.

Следует отметить, что вязкость расплавов полимеров существенно зависит от приложенной нагрузки. Так как показатель текучести того или иного полимерного материала измеряют лишь при одном значении нагрузки, то этот показатель характеризует только одну точку на всей кривой течения в области относительно низких напряжений сдвига. Поэтому полимеры, несколько различающиеся по разветвленности макромолекул или по молекулярной массе, но с одинаковым показателем текучести расплава, могут вести себя по-разному в зависимости от условий переработки. Однако, несмотря на это, по показателю текучести расплава для многих полимеров устанавливают границы рекомендуемых технологических параметров процесса переработки. Значительное распространение этого метода объясняется его быстротой и доступностью. Экструзионные процессы производства пленок требуют высоких вязкостей расплава, в связи с этим применяются марки сырья с низким показателем текучести расплава.

По материалам компании «НПЛ Пластик»

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png