Андрей Дмитриевич Линде, Стэнфордский университет (США), профессор. 10 июня 2007 года, Москва, ФИАН

Во-первых, я должен сказать, что я немножечко робею. Я в этом зале выступал много раз. Сначала я здесь учился, и когда всё это началось, я был студентом Московского университета, приходил сюда на семинары, в ФИАН. И каждый раз я сидел на этих семинарах, мучительно, мне было жутко интересно, а также невероятно сложно. Всё то, что говорилось, я понимал, ну, примерно на десять процентов. Я думал, что, наверное, я, ну, идиот такой, ничего больше не понимаю, физика из меня не получится… Но уж больно хотелось, продолжал ходить. Эти десять процентов понимания у меня сохранились до сих пор: в основном на семинарах, на которые я хожу, я понимаю примерно десять процентов. А потом я сделал впервые свой доклад здесь. Я поглядел на лица людей, и у меня было впечатление, что они тоже понимают на десять процентов. И тогда у меня исчез комплекс неполноценности, отчасти по крайней мере. Немного, наверное, всё равно остался… Я зачем это говорю? Тематика довольно сложная. И если десять процентов будет понятно, то, значит, вы на правильном пути.

То, о чём я сейчас буду говорить, связано с теорией инфляционной Вселенной. Инфляционная Вселенная, по-русски это называлось «раздувающаяся Вселенная», но стандартное название «инфляционная». В последнее время возник такой термин - «Multi-verse». Это термин, заменяющий слово «Universe». Значит, вместо одной Вселенной - много вселенных сразу в одной. Ну вот по-русски, пожалуй, наиболее адекватный перевод - это «многоликая Вселенная». И про это я сейчас буду говорить.

Но сначала общее введение о космологии вообще. Откуда взялась инфляционная космология (зачем она понадобилась)? Что было до нее (теория Большого взрыва). Сначала такие биографические данные. Возраст Вселенной, согласно последним наблюдаемым данным… Вот когда я говорю про возраст, каждый раз я говорю и где-то в душе ставлю маленькую запятую, что я должен к этому вернуться и потом сказать, что на самом деле Вселенная может быть бесконечно старая. Ну вот то, что люди называют возрастом Вселенной, это примерно 13,7 миллиарда лет с точностью до… пожалуй, лучше, чем 10%. Сейчас люди знают это достаточно хорошо. Размер наблюдаемой части Вселенной… Что значит «наблюдаемой»? Ну вот, свет путешествовал к нам 13,7 миллиарда лет, значит надо умножить это на скорость света и получится расстояние, на котором мы сейчас видим вещи. Говорю я это, а в душе сразу опять ставится запятая: на самом деле это не так. Потому что мы видим в несколько раз дальше, чем это, потому что те объекты, которые послали к нам свет 13,7 миллиарда лет назад, они сейчас от нас находятся дальше. И мы от них видим свет-то, а они дальше, поэтому в действительности мы видим больше, чем скорость света умножить на время существования Вселенной.

Дальше. Средняя плотность вещества - примерно 10 –29 г/см 3 . Очень мало. Но мы живем в том месте, где оно сконденсировалось… Вес наблюдаемой части Вселенной - больше 10 50 тонн. Вес в момент рождения… а вот это вот самое интересное. Когда Вселенная родилась, если отсчитывать прямо от момента Большого взрыва, совсем вот во время t = 0 , то ее вес должен был быть бесконечным. Если отсчитывать от какого-то другого момента… он называется планковский. Планковский момент - это момент 10 в степени минус… Ну вот, иногда все-таки буду писать на доске… Значит, t планковское - это примерно 10 в минус сорок третьей секунд (t p ~ 10 –43 с). Это момент, начиная с которого впервые мы можем Вселенную рассматривать в терминах нормального пространства-времени, потому что если мы возьмем объекты на временах меньше, чем это, или на расстояниях меньше, чем планковское расстояние (это 10 –33 см), - если мы возьмем меньшее расстояние, то на меньших расстояниях пространство-время так сильно флуктуирует, что померить их будет нельзя: линейки гнутся, часы вращаются, как-то нехорошо… Поэтому нормальное рассмотрение начинается с этого момента. И в этот момент Вселенная имела вес необычайно большой. Я вам скажу, какой - немножечко погодя. А то, что сделала инфляционная Вселенная: мы научились объяснять, как можно всю Вселенную получить из меньше чем одного миллиграмма вещества. Всё, что мы сейчас видим…

И давайте дальше, предварительные данные. Простейшие модели Вселенной, то, что вошло в учебники, - это три возможных модели Фридмана. Первая - это замкнутая Вселенная, [вторая] - открытая Вселенная, и [третья] - плоская Вселенная. Эти картинки - тоже примерные только картинки. Смысл состоит в следующем.

Вот простейший вариант - плоская Вселенная. Геометрия плоской Вселенной такая же, как геометрия плоского стола, то есть параллельные линии остаются параллельными и нигде не пересекаются. В чём отличие, чем отличается от плоского стола? Тем, что если у меня есть две параллельные линии… например, пошло два луча света, параллельные друг другу… Вселенная расширяется, поэтому, хотя они параллельные, два луча света, они удаляются друг от друга за счет того, что вся Вселенная расширяется. Поэтому сказать так - что геометрия плоского стола, - это не до конца правильно. Вселенная является кривой в четырехмерном смысле. В трехмерном смысле она является плоской.

Замкнутая Вселенная похожа геометрическими свойствами на свойства поверхности сферы. То есть если у меня есть две параллельные линии на экваторе, то они пересекаются на северном и южном полюсе. Параллельные линии могут пересекаться. А мы как бы живем на поверхности сферы, как такая блоха, которая ползет по глобусу. Но тоже аналогия поверхностная - в двух смыслах. Наша Вселенная, она как бы трехмерная сфера в четырехмерном пространстве. Приходится картинки рисовать, а в действительности только аналогии… И, кроме того, она расширяется. Если мы захотим пройти от экватора до северного полюса, то нам времени не хватит - такая Вселенная может сколлапсировать, или мы не дойдем, потому что она слишком быстро расширяется.

Открытая Вселенная похожа по своим свойствам на свойства гиперболоида, то есть если у горловины гиперболоида я пущу две параллельные прямые, то они начнут расходиться и никогда не встретятся.

Вот три основных модели. Их предложил Фридман довольно давно, в 20-е годы прошлого столетия, и Эйнштейн их очень не любил. Не любил, потому что это всё как бы противоречило той идеологии, на которой были воспитаны люди того времени. Идеология состояла в том, что Вселенная - это ведь система координат, ну и координаты-то, они не расширяются, это просто сетка. Люди всегда считали в Европе - сначала считали, - что Вселенная конечна и статична. Конечна, потому что Бог бесконечен, а Вселенная меньше Бога, поэтому она должна быть конечна, а статична… ну, потому что, что же ей делать-то - система координат… Потом они отказались от первого предположения, сказав, что Бог не потеряет много, если он один из своих атрибутов отдаст Вселенной и сделает ее бесконечной, но всё равно считалось, что она статична.

Расширение Вселенной - это было странное такое свойство, против которого долго боролись, до тех пор, пока не увидели, что она на самом деле расширяется. Значит, то, что произошло за последние несколько лет, экспериментально - не в теоретической физике, а в экспериментальной космологии. Выяснилось две вещи. Мы начнем со второго. В 1998 году люди увидели, что Вселенная сейчас расширяется с ускорением. Что означает с ускорением? Ну, вот она расширяется с какой-то скоростью. В действительности, это немножко неправильно…

Значит, вот a - это масштаб Вселенной, a с точкой (å ) - это скорость расширения Вселенной, a с точкой разделить на a (å /a ) - это… Вот a , например, расстояние от одной галактики до другой, назовем его буквой a . А это (å /a ) - скорость, с которой галактики убегают друг от друга. Вот эта вещь (å /a = H) есть хаббловская постоянная, она на самом деле зависит от времени. Если эта вещь убывает со временем, это не означает, что Вселенная перестает расширяться. Расширение означает, что a с точкой больше нуля (å > 0). А вот то, что люди обнаружили сейчас, - что сейчас этот режим асимптотически приближается к константе (å /a = H → const), то есть не только a с точкой положительно, но вот это их отношение, оно устремляется к константе. И если это дифференциальное уравнение разрешить, окажется, что масштабный фактор Вселенной ведет себя асимптотически приблизительно так: a ~ e H t - Вселенная будет экспоненциально расширяться, и этого не очень-то ожидали раньше. То есть это есть ускоренное расширение Вселенной, а раньше, по стандартной теории, выходило, что Вселенная должна расширяться с замедлением.

Вот это открытие последних девяти лет. Сначала люди думали, что, ну, где-нибудь экспериментальная ошибка, еще что-то, потом стали называть их разными словами - космологическая постоянная, энергия вакуума, темная энергия… Значит, вот это то, что произошло недавно. Теория о которой я сейчас буду говорить, - это инфляционная космология. Она предполагает (и сейчас всё больше кажется, что, наверное, это было правильное предположение, мы еще всё равно в точности не знаем - есть конкурирующие теории, хотя они мне там и не нравятся, но, значит, это точки зрения) - но кажется, что это вот правильная вещь, - что в ранней Вселенной, по-видимому, Вселенная тоже расширялась ускоренно. Причем с гораздо большим ускорением, чем то, с каким она расширяется сейчас, - на много десятков порядков большим ускорением. Вот эти два открытия… по-видимому, их надо попытаться интерпретировать как-то.

Значит, картинки, которые при этом часто рисуют… Вот (пока что не смотрите на эту красную картинку) стандартная, из учебника. Если Вселенная замкнутая - то есть геометрия похожа на геометрию сферы, поверхности сферы, - то она возникает из сингулярности и исчезает в сингулярность, у нее конечное время существования. Если она плоская, то она возникает из сингулярности и расширяется до бесконечности. Если она открытая, то она тоже продолжает двигаться с постоянной скоростью.

То, что выяснилось, то, что я сейчас сказал насчет этой темной энергии, космологической постоянной, ускорения Вселенной, - выяснилось, что она ведет себя так. И выяснилось, что она ведет себя так, какая бы она ни была - открытая, закрытая, плоская… Вообще в таких случаях вот такая вот вещь. Сейчас, если мы открываем учебники по астрономии, в основном они всё еще публикуют вот эти вот три картинки, и это то, на чём мы были воспитаны в течение последних лет. Поэтому существование вот этой последней - это было замечательное открытие, и оно связано с тем, что люди поверили, что в вакууме существует ненулевая плотность энергии, в пустоте. Она очень маленькая: она такого же порядка, как плотность энергии вещества во Вселенной, - 10 –29 г/см 3 . И вот когда я иногда представляю этих людей, я говорю: «Посмотрите, вот это люди, которые померили энергию… ничего». Вот так, вот эта вот красная черта.

Общая картина распределения энергии… Когда я говорю «энергия», или говорю «материя», «вещество», я подразумеваю одно и то же, потому что, как мы знаем, E равняется mc квадрат (E = mc 2 ), то есть эти две вещи пропорциональны друг другу… Есть темная энергия…


Полный бюджет энергии и материи во Вселенной представлен таким вот пирогом: 74% примерно составляет темная энергия. Что это такое, никто не знает. Либо это энергия вакуума, либо это энергия медленно меняющегося однородно распределенного специального скалярного поля - об этом дальше. Ну, вот это отдельная часть, она не комкуется. Что я под этим подразумеваю? Она не сбивается в галактики. Темная материя (примерно 22% всего бюджета) - что-то такое, что комкуется, но чего мы не видим. Что-то, что может сбиваться в Галактики, но чего мы не видим, не светится. И примерно 4–5% - это «нормальная» материя. Вот бюджет всей нашей материи.

И есть там мировые загадки. Почему они одного и того же порядка, эти величины, и почему так много все-таки такой энергии сидит в пустоте? Как же это вообще так оказалось, что мы, такие гордые, думали, что всё такого типа, как мы, а нам-то и дали всего четыре процента… Так вот…

Теперь - инфляционная Вселенная. Пока что идет просто справка, чтобы было понятно, о чём я говорю, а уже потом начнется дело. Инфляция - это вот что. Вот то, что было на предыдущих картинках, что Вселенная началась и начала расширяться, и, помните, дуга была выгнута вот в такую сторону… Вот если я вернусь назад, покажу вам вот это всё… вот видите, все дуги - они были выгнуты вот так. Инфляция - это кусок траектории, который существовал как бы до Большого взрыва в некотором смысле, до того, как дуга начала прогибаться так. Это время, когда Вселенная расширялась экспоненциально и Вселенная расширялась с ускорением. Она изначально могла иметь очень маленький размер, а потом была стадия очень быстрого расширения, потом она становилась горячей, и потом происходило всё то, что в учебниках было написано: что Вселенная была горячая, взорвалась, как горячий шар, - вот это всё было после стадии инфляции, а во время инфляции частиц могло не быть вообще. Вот такая справка.

Значит, зачем всё это понадобилось? А затем, что люди смотрели 25 лет назад - немножко больше уже - на теорию Большого взрыва и задавали разные вопросы. Я перечислю вопросы.

Что было, когда ничего не было? Ясно, что вопрос бессмысленный, чего же его задавать… В учебнике Ландау и Лифшица написано, что решения уравнений Эйнштейна нельзя продолжить в области отрицательного времени, поэтому бессмысленно спрашивать, что было до этого. Бессмысленно, но все люди всё равно спрашивали.

Почему Вселенная однородна и изотропна? Вопрос: почему, действительно? Что значит однородна? Ну вот, если мы рядом с нами посмотрим, наша Галактика - она не однородна. Рядом с нами Солнечная система - большие неоднородности. Но если мы посмотрим в масштабах всей наблюдаемой нами сейчас части Вселенной, вот эти 13 миллиардов световых лет, то в среднем справа и слева от нас Вселенная имеет ту же самую плотность, с точностью примерно до одной десятитысячной и даже лучше, чем это. Значит, кто-то ее отполировал, почему она такая однородная? И в начале прошлого века на это отвечали следующим образом. Есть такая вещь, которая называется «космологический принцип»: что Вселенная должна быть однородна.

Я любил шутить, что люди, у которых нет хороших идей, у них иногда есть принципы. Потом я перестал это делать, потому что оказалось, что этот принцип был введен, в частности, Альбертом Эйнштейном. Просто в то время люди не знали, и до сих пор во многих книжках по астрономии люди обсуждают космологический принцип - что Вселенная должна быть однородна, потому что… ну, вот она однородна!

С другой стороны, мы знаем, что принципы - они уж должны быть тогда полностью правильные. Там, не знаю, человек, который берет маленькие взятки, его нельзя назвать человеком принципов. Наша Вселенная была немножко неоднородной - в ней есть галактики, они необходимы для нас, значит откуда-то мы должны понять, откуда, галактики берутся.

Почему все части Вселенной стали расширяться одновременно? Та часть - Вселенная, и та часть - Вселенная, они друг с другом не говорили, когда Вселенная только что начала расширяться. Несмотря на то, что размер Вселенной был маленький, для того чтобы одна часть Вселенной узнала о том, что другая начала расширяться, надо, чтобы человек, который живет здесь, - ну, воображаемый человек - узнал бы о том, что эта часть начала расширяться. А для этого он должен бы был получить сигнал от того человека. А для этого потребовалось бы время, так что люди никак не могли договориться, особенно в бесконечной Вселенной, что, ура, надо начать расширяться, уже позволили… Значит, это почему все части Вселенной начали расширяться одновременно…

Почему Вселенная плоская? То, что сейчас экспериментально известно, - что Вселенная почти плоская, то есть параллельные линии, они не пересекаются в наблюдаемой части Вселенной. Значит, почему Вселенная такая плоская? Нас в школе учат, что параллельные линии не пересекаются, а в университете говорится, что Вселенная может быть замкнутая, и они могут пересекаться. Так почему Эвклид был прав? Не знаю…

Почему во Вселенной такое огромное количество элементарных частиц? В наблюдаемой нами части Вселенной больше чем 10 87 элементарных частиц. Стандартный ответ на это состоял в том, что, ну, Вселенная - она же большая, вот поэтому… А почему она такая большая? И я иногда аккумулирую это в таком виде: почему так много людей пришло на лекцию? - а потому, что так много людей в Москве… - а почему так много людей в Москве? - а Москва только часть России, а в России много людей, часть пришла на лекцию… - а почему так много людей в России, вот в Китае еще больше? А вообще говоря, мы только на одной планете живем, а у нас много планет в Солнечной системе, а сейчас еще больше планет отыскивают еще во Вселенной, а вы знаете, что в нашей Галактике 10 11 звезд, и поэтому где-то планеты, где-то есть люди, часть из них пришла на лекцию… Почему в нашей Галактике так много звезд? А вы знаете, сколько галактик в нашей части Вселенной? Примерно 10 11 –10 12 галактик, и в каждой из них 10 11 звезд, вокруг них вращаются планеты, и часть людей пришла на лекцию. А почему у нас так много галактик? Ну, потому что Вселенная же большая… Значит… и вот здесь мы и кончаем.

А если взять, например, Вселенную - типичную замкнутую Вселенную, у которой был бы единственный типичный размер, который имеется в общей теории относительности вместе с квантовой механикой, - 10 –33 см, начальный размер. Значит, сжать вещество до самой предельной плотности, которая только возможна (это так называемая планковская плотность, ρ планковское), - это примерно 10 94 г/см 3 … Почему предельная? Она не в том смысле предельная, что дальше нельзя, а в том смысле, что если сжать материю до такой плотности, то Вселенная начинает так флуктуировать, что ее нормальным способом описать невозможно. Значит, вот если взять и сжать материю до самой большой плотности, засунуть в нее естественного размера замкнутую Вселенную и посчитать количество элементарных частиц там, то окажется, что в ней есть одна элементарная частица. Может быть, деcять элементарных частиц. А нам надо 10 87 . Поэтому это реальная проблема - откуда, почему так много элементарных частиц?

Дело этим не кончается. Откуда взялась вся энергия во Вселенной? Вот раньше я даже это так для себя не сформулировал, до тех пор, пока меня не пригласили в Швецию на какой-то нобелевский симпозиум, посвященный энергии… то есть туда собрались люди, которые занимаются нефтедобычей, еще чего-то. И мне дали там открывать эту конференцию, и первый доклад… Я никак не мог понять, чего они от меня хотят? Я нефтедобычей не занимаюсь, солнечной энергией и энергией ветра не занимаюсь, что я про энергию вообще скажу? Ну, и начал я тогда доклад с того, что сказал: вы знаете, откуда энергия-то взялась во Вселенной? Знаете, сколько у нас энергии? Давайте посчитаем.

Энергия вещества во Вселенной не сохраняется. Первый парадокс. Вот мы знаем, что энергия сохраняется, - а вот это не правильно. Потому что, если мы возьмем, например, загоним газ в ящик и дадим ящику расширяться… Вот ящик - это наша Вселенная, дадим ящику расширяться. Газ - он давление оказывает на стенки ящика. И когда ящик расширяется, этот газ совершает работу над стенками ящика, и поэтому когда ящик расширяется, газ энергию свою теряет. Потому что он работу совершает, всё правильно, баланс энергии есть. Но только факт-то состоит в том, что во время расширения Вселенной полная энергия газа уменьшается. Потому что есть стандартное уравнение: изменение энергии равняется минус давление умножить на изменение объема (dE = –PdV ). Объем-то Вселенной растет, давление-то положительно, поэтому энергия уменьшается.

Вот во всех моделях Вселенной, нормальных, тех, которые были ассоциированы с теорией Большого взрыва, полная энергия Вселенной уменьшалась. Если сейчас 10 50 т, то сколько же было в начале? Потому что энергия-то только тратилась. Значит, тогда в начале должно было быть больше. Кто-то должен был сделать эту Вселенную с гораздо большей энергией, чем сейчас. С другой стороны, что-то же должно сохраняться. А куда тратится эта энергия во время расширения Вселенной? Она тратится на то, что размер Вселенной меняется, что Вселенная расширяется с некоторой скоростью. Есть некоторая энергия, которая прячется в геометрии Вселенной. Есть энергия, которая связана с гравитацией. И вот полная сумма энергии вещества и гравитационной энергии, она сохраняется. Но только если посчитать полную сумму. Есть разные способы счета - и опять там запятая некая ставится, - но при некотором способе счета полная сумма энергии вещества и гравитации, она просто равна нулю. То есть энергия материи компенсируется энергией гравитационного взаимодействия, поэтому есть ноль. И поэтому, да, она началась с нуля, она нулем и кончится, всё сохраняется, но только этот закон сохранения, он не очень полезен для нас. Он не объясняет нам, откуда же такая огромная энергия взялась. Значит, сколько?

Вот согласно теории Большого взрыва, полная масса вещества в начале, когда Вселенная родилась, должна была превосходить 10 80 т. Это уже много. Это совсем много… А если бы я это всё отчислял даже прямо от сингулярности, то просто во Вселенной должно было быть бесконечное количество вещества. И тогда возникает вопрос: откуда же кто-то нам дал это бесконечное количество вещества, если до момента возникновения Вселенной, ну, ничего не было? Сначала ничего не было, а потом вдруг стало, и так много, что даже как-то немножко странно. То есть кто бы это мог сделать?.. А физики так вопрос формулировать не хотели, ну и сейчас не хотят.

Поэтому, может быть, хорошо, что нашлась теория, которая позволяет, по крайней мере в принципе, объяснить, как можно было сделать всё это, исходя из кусочка Вселенной с изначальным количеством материи меньше одного миллиграмма. Ну вот, когда я про это говорю, я думаю, что бы нормальный человек подумал, если бы такую вещь сказать давно, или если бы не писать уравнений при этом, и так далее…

Я помню, когда меня здесь проводили на старшего научного сотрудника, вызвали меня и начали меня спрашивать: «А чем вы занимаетесь?» А я им начал говорить, что вот, занимаюсь я, в частности, тем, что в разных частях Вселенной может оказаться так, что законы физики могут быть разные: в части есть, там, электромагнитное взаимодействие, в части - нет… Они мне сказали: «Ну, это уж слишком!» Но старшего научного все-таки дали. Вот это и есть та самая теория многоликой Вселенной, о которой я вам буду говорить.

Вот мы переходим к делу, к теории инфляционной космологии. Сначала первая простейшая модель. Простейшая модель выглядит следующим образом. Вот у вас есть некое скалярное поле, у которого энергия пропорциональна квадрату скалярного поля. Первые простейшие слова - и уже здесь возникает вопрос: что такое скалярное поле? Часть людей знает, часть людей не знает. Часть людей знает, что в Швейцарии сейчас строится огромный ускоритель, для того чтобы найти хиггсовскую частицу. Хиггсовская частица - это частица, которая является как бы квантом возбуждения специального типа скалярного поля. То есть люди используют эти поля уже давно, больше тридцати лет. Но смысл интуитивный легче всего понять с помощью аналогии. Вот здесь вот есть 220 вольт в сети. Если бы было просто 220 вольт и не было нуля, всю Вселенную заполнило бы 220 вольт, то никакого тока бы не было, ничего бы никуда не текло, потому что это было бы просто другое вакуумное состояние. В Америке 110 вольт. То же самое - если было бы просто 110 вольт, ничего бы не текло… Если вы возьметесь одной рукой за одну сторону, другой рукой за другую, то вас бы тут же убило, потому что разница потенциалов - это то, что… Я должен перестать…

Хорошо. Значит, так вот, постоянное скалярное поле - это аналог такого же поля. Это не точная аналогия, но примерная аналогия. Что такое векторное поле? Векторное поле - например, электромагнитное. У него имеется величина и направление. Что такое скалярное поле? У него имеется величина, а направления нет. Вот и вся разница, то есть оно гораздо проще, чем электромагнитное поле. У него нет направления, оно является лоренцовским скаляром. Лоренцовский скаляр - это означает следующее. Если вы побежите относительно него, вы не почувствуете, что вы бежите: ничего не изменилось. Если вы повернетесь, ничего не изменится тоже, вы не почувствуете, что вы поворачиваетесь. Выглядит как вакуум, если оно не движется, если оно постоянно. Но только это специальный вакуум, потому что у него может быть потенциальная энергия. Это первое свойство его. И во-вторых, если у вас в разных частях Вселенной разный вакуум, то там также разный вес элементарных частиц, разные свойства, поэтому от того, есть или нет это скалярное поле, а) зависят свойства элементарных частиц и б) зависит плотность энергии вакуума во Вселенной, так что это, в принципе, важная вещь. И вот простейшая теория, у которой энергия этого скалярного поля пропорциональна его квадрату.


Давайте посмотрим на уравнения. Я сейчас никакие уравнения решать не буду, а показывать их буду, так что не надо бояться… Первое - это немного упрощенное уравнение Эйнштейна, которое говорит: вот это скорость расширения Вселенной поделить на размер, это есть Хаббловская постоянная в квадрате, и она пропорциональна плотности энергии вещества во Вселенной. А я сейчас захочу пренебречь всем - там, газом, чем угодно… оставить только скалярное поле. И здесь надо было бы написать гравитационную постоянную, там еще восемь пи на три…

Сейчас забудем про гравитационную постоянную. Люди, которые занимаются этой наукой, они говорят: ну, возьмем гравитационную постоянную равную единице, скорость света, равную единице, постоянную Планка, равную единице, а потом, когда всё решим, мы это обратно вставим в решение, чтобы проще было…

Значит, вот это чуть-чуть упрощенное уравнение Эйнштейна, я оттуда еще выбросил пару членов, которые сами оттуда выбрасываются, после того как Вселенную начнет быстро сдувать. Это уравнение движения для скалярного поля. Не глядите сейчас на этот член. Это есть ускорение скалярного поля, а это показывает ту силу, с которой поле хочет устремиться в свой минимум энергии. И, для того чтобы было понятно, сравните это с уравнением для гармонического осциллятора. Опять, не смотрите на этот член. Это есть ускорение гармонического осциллятора, пропорциональное возвращающей силе. То есть сила, которая тащит поле осциллятора в точку x = 0, а это его ускорение. И мы знаем, чем дело кончается. Осциллятор так вот осциллирует. А если мы добавим такой член, x с точкой. Это скорость движения осциллятора. То есть это, если его перенести вот в эту сторону, будет понятно, что это как бы сила, которая не пускает осциллятор двигаться быстро. Это примерно как если вы засунете маятник в воду, то вода будет препятствовать осцилляции, и он будет осциллировать всё медленнее и медленнее. Как бы сила трения или вязкости.

Вот оказывается, что во Вселенной тоже имеется аналогичный член, который описывает уравнение для скалярного поля. Уравнение-то выглядит точно так же. И этот член похож на этот. Вот оказывается, что во Вселенной эффект трения возникает, если Вселенная быстро расширяется. Вот такой трюк. Теперь давайте вернемся к предыдущей картинке.

Вот когда скалярное поле здесь, то энергии у скалярного поля мало, Вселенная расширяется медленно, трения никакого нету. Если скалярное поле находится здесь, то энергия очень большая. Если энергия очень большая, посмотрим, что получается, на следующей картинке.

Энергия очень большая, Хаббловская постоянная большая, коэффициент трения большой. Если коэффициент трения большой, скалярное поле катится вниз очень медленно. Если скалярное поле катится вниз очень медленно, то в течение большого времени оно остается почти постоянным. Если оно остается почти постоянным, я решаю вот это уравнение: a с точкой на a (å /a ) равняется почти постоянной. А я вам уже сказал, какое будет решение. Если a с точкой на a (å /a ) является почти постоянной, то это экспоненциальное решение, самое простейшее дифференциальное уравнение. И в таком случае Вселенная начинает расширяться экспоненциально.


Логика такая: если большое значение скалярного поля φ, большая скорость расширения Вселенной, большой коэффициент трения, поле φ катится вниз очень медленно. Решая дифференциальное уравнение с константой, получаем экспоненциальное расширение, это есть инфляция. Всё очень просто.

До этого надо было, в общем, помучиться, чтобы додуматься, чтобы всё свести к простому. В действительности началось всё с гораздо более сложного. Впервые идеи такого типа стал высказывать Алеша Старобинский в 1979 году здесь, в России. Его вариант этой теории основывался на квантовой гравитации с определенными поправками - конформные аномалии, теория была очень сложной, непонятно было, как, с чего начать, но теория, тем не менее, внутри Советского Союза была тогда очень популярной, она называлась «моделью Старобинского». Но немножко сложноватой, не было понятно, какая ее цель. Он хотел решить проблему сингулярности, это не удавалось…

После этого возникло то, что сейчас называется старая инфляционная теория, ее предложил в 1981 году Алан Гус (Alan Guth) из MIT - сейчас он в MIT, а раньше он было в SLAC , рядом со Стэнфордом. Он предложил, что Вселенная с самого начала сидит зажатая по своей энергии в состоянии ложного вакуума, никуда не движется, энергия там постоянная, в это время она расширяется экспоненциально, а потом этот ложный вакуум с треском разваливается, образуются пузырьки, они соударяются… Зачем это было нужно? А его желание состояло в том, чтобы решить тот лист проблем, который я вам написал раньше: почему Вселенная однородная, почему она изотропная, почему такая большая, - его цель была такая. И в этом было достоинство его работы. Не потому, что он предложил модель - его теория не работала, а потому, что он сказал, что вот замечательно было бы сделать что-то такое, и тогда мы решим сразу все эти проблемы. А его модель не работала потому, что после столкновения пузырьков Вселенная становилась такой неоднородной и изотропной, что, как бы, не надо было и стараться…

После этого все мы находились в состоянии душевного кризиса, потому что идея была такая приятная, такая симпатичная, и у меня была язва желудка, может быть от огорчения, что нельзя, никак не получается. А потом я придумал, как сделать то, что я назвал новой инфляционной теорией, а потом я придумал вот эту простую штуку с хаотической инфляцией, которая была проще всего. И тогда стало ясно, что мы говорим не о трюке каком-то, а всё может быть так просто, как теория гармонического осциллятора.

Но зачем это всё надо, я не сказал. А вот зачем. Во время инфляции, во время вот этой стадии, пока я катился вниз, Вселенная могла расшириться вот в такое количество раз. Это в простейших моделях. Что означает вот эта цифра? Ну вот я сейчас скажу, что это означает. Пример из арифметики. Самый маленький масштаб - 10 –33 см. Умножу его на десять, а дальше здесь рисуется вот такое вот количество нулей - не важно, какое количество нулей. Теперь возникает вопрос: чему равняется произведение? И ответ состоит в том, что вот, оно равняется вот этому же - значит, что 10 –33 можно уже не писать, это маленькая вещь. Значит, Вселенная оказывается вот такого огромного размера. А сколько мы сейчас видим? Вот эти 13 миллиардов лет, умноженные на скорость света, - это примерно 10 28 см. А вот это даже не важно, чего - сантиметров или миллиметров, не важно даже чего. Важно то, что вот это, ну, несопоставимо меньше этого.

То есть наша наблюдаемая часть Вселенной - мы вот где-то вот здесь. (Можно сейчас уже погасить, да? ) Вселенная начала расширяться, раздувалась, раздувалась, раздувалась, и мы живем как бы на поверхности этого огромного глобуса. И поэтому параллельные линии кажутся параллельными, поэтому никто и не видел этого северного и южного полюса. Поэтому наша часть Вселенной, где-то здесь, она вот началась где-то вот отсюда, из почти что точечки, и поэтому-то здесь все начальные свойства, ну, они-то рядышком, они были примерно одинаковыми. Поэтому и здесь они одинаковые.

А почему Вселенная такая однородная? Ну а представьте, что вы взяли Гималаи и растащили их вот в такое количество раз. Значит, у вас никто туда с рюкзаком не пойдет, потому что от долины до горы надо будет вот столько идти. Будет плоское место. Поэтому наша Вселенная такая плоская, такая однородная, во всех направлениях одинаковая.

Почему она изотропная? Что называется изотропной? Ну, она похожа как бы на сферу, во всех направлениях одинаковая, но она могла бы быть как огурец. Но если я огурец раздую вот в такое количество раз - а мы живем на его шкурке, - то во всех направлениях он будет одинаковым, поэтому Вселенная во всех направлениях станет одинаковой. То есть таким образом мы решаем большинство тех проблем, которые у нас возникали. Почему Вселенная такая большая? А вот почему! А сколько там элементарных частиц? А вот столько! Поэтому нам и хватает…

То есть мы еще не знаем, откуда всё это взялось, мы не можем так просто решить проблему сингулярности начальной - мы про это еще немножечко дальше скажем, - но вот это то, зачем была нужна эта теория.

С другой стороны, могло бы оказаться, что мы переработали немножко. Потому что если Гималаи полностью выплощить, то вся Вселенная будет настолько плоская и однородная, что действительно будет плохо жить там, мы тогда галактики ниоткуда не возьмем.

Но оказалось, что можно галактики продуцировать за счет квантовых флуктуаций. И это то, что здесь же, в ФИАНе, говорили Чибисов и Муханов . Они изучали модель Старобинского и увидели, что там, если посмотреть на квантовые флуктуации пространства, а потом посмотреть, что происходит во время расширения Вселенной, то они вполне могут породить галактики. И мы на них смотрели и думали: что вы, ребята, тут говорите? Вы говорите о квантовых флуктуациях, а мы говорим о галактиках! Они же реальные… А потом вот что выяснилось. Это уже когда мы перевели всё это на язык скалярного поля и так далее… Молодцы, в общем, люди! Надо же было додуматься до этого!

Вселенная работает как лазер, только вместо лазерного поля она продуцирует галактики. Вот что происходит. Возьмем скалярное поле, сначала высокочастотное, квантовые флуктуации. Квантовые флуктуации существуют всегда. Здесь, в этой аудитории, на маленьких расстояниях есть квантовые флуктуации. Хорошо, что вы мне дали два часа, я бы не закончил… За два часа, наверное, закончу…

Так вот, квантовые флуктуации существуют сейчас, прямо здесь, но они всё время осциллируют, их, если посмотреть в мелкоскоп и быстро так снимать, то тогда мы увидим, что там что-то возникает, что-то исчезает. Так просто не увидишь, они для нас не важны. Но во время быстрого расширения Вселенной, предположим, что была такая квантовая флуктуация. Она растягивалась, с расширением Вселенной. Когда она растянулась достаточно - помните это уравнение для скалярного поля, где стоит этот член 3Hφ с точкой? Уравнение, член с трением. Когда у вас поле было коротковолновое, оно знать ничего не знало о трении, потому что оно билось с такой энергией, что его трением остановить было нельзя. А потом, когда оно растянулось, оно энергию свою потеряло и вдруг почувствовало, что Вселенная расширяется, что трение есть, и вот так и застыло. Застыло и продолжало расширяться, растягивая Вселенную.

После этого, на фоне этой флуктуации, которая нарисована здесь, прежние флуктуации, которые раньше были очень коротковолновыми, энергичными и так далее, они растянулись, увидели, что Вселенная расширяется, почувствовали трение и застыли - на фоне тех флуктуаций, которые раньше застыли.

После этого Вселенная продолжала расширяться, и новые флуктуации замерзали, а Вселенная расширялась-то экспоненциально. И в результате что произошло? Что эти все флуктуации раздулись до большого размера.

Я сейчас поясню, что это такое: это результат вычислений, которые как бы симулируют возникновение флуктуаций и их дальнейшую эволюцию. Я объясню, что это будет, что это такое. Смысл состоит вот в чём. Что мы взяли эти квантовые флуктуации. Они замерзли. Вселенная стала неоднородной на экспоненциально большом масштабе. Эти неоднородности стоя т, стоя т, стоя т… Потом инфляция кончилась. Потом - эта часть Вселенной еще не видит эту часть Вселенной. А потом прошло время, и они друг друга увидели. И когда увидели, эта часть Вселенной сказала: «А, у меня энергии меньше, а у тебя энергии больше; давай, все камни от меня полетят в эту сторону, потому что здесь гравитация сильнее». И эти флуктуации размораживаются. То есть сначала они были заморожены - за счет быстрого расширения Вселенной. А потом, когда две части Вселенной друг друга увидели, то эти флуктуации размерзли, и это буквально… по барону Мюнхгаузену.

Я не знаю, в детстве сейчас вас учат, там, барона Мюнхгаузена читают? Нам читали. Как он путешествовал по России. Хотя он был немецкий лжец, но путешествовал по России, в Сибири. Они охотились. И был такой жуткий мороз, что когда он хотел позвать друзей, чтобы они вместе собрались, то он сказал «ту-туту-туту!», а ничего не получилось, потому что звук замерз в рожке. Ну, потом, было холодно, он в снегу, как опытный человек, отрыл пещеру, зарылся там… Наутро вдруг он слышит: «Ту-туту-туту!». Что произошло? Размерзся звук-то. Потому что утром солнце появилось, всё, снег подтаял, и звук размерзся…

Вот здесь это же самое: сначала квантовые флуктуации замерзли, растащились на большое расстояние, а потом, когда дело уже пришло к тому, чтобы галактики образовывались, они размерзли, и неоднородности собрались вместе и сделались галактикой.

Сначала мы начали с квантовых флуктуаций. Потом мы быстро сделали их огромными. И когда мы сделали их огромными, мы фактически сделали их классическими. Они уже в это время не осциллировали, не исчезали, они замерзли, были большими. Вот этот трюк - как из чего-то квантового сделать что-то классическое.

Значит, этот фильм показывает вот что. Если мы начнем с чего-то почти однородного, как сейчас, и потом начнем добавлять эти вот синусоиды… Каждый новый кадр показывает экспоненциально большую Вселенную. Но компьютер не мог расширяться, поэтому мы сжимали картинки. На самом деле надо понимать, что каждая картинка соответствует экспоненциально большей и большей Вселенной. И длины волн всех этих значений, они все примерно те же самые в момент, когда они создаются. А потом они растягиваются, но вот здесь не видно, что это здоровая синусоида. Кажется, что это пик, там, башня острая… Это просто потому, что компьютер их сжал.

Не видно также и другое: что в тех местах, где скалярное поле подскочило по случайности очень высоко, в этом месте энергия скалярного поля оказывается такой большой, что в этом месте Вселенная начинает расширяться еще гораздо быстрее, чем она расширялась здесь. И поэтому в действительности, если бы правильно рисовать картинку - ну просто компьютер не умеет это делать, и это не компьютер виноват, это просто физика такая: нельзя кривое пространство представить себе уложенным в наше пространство, просто кривовато, как кривая поверхность, не всегда это удается, поэтому здесь ничего не поделаешь, - надо просто понять, что вот эти вот пики, значит, размер отсюда досюда - он гораздо больше размера отсюда досюда. Здесь на самом деле здоровый пузырь.

Это то, что… - тоже достоинство русского обучения - то, что мы выяснили, когда были на практике военного дела в университете: что расстояние по прямой бывает гораздо длиннее, чем расстояние по кривой, если прямая проходит рядом с офицером… Здесь, если вы пойдете по прямой рядом с этим пиком, то вы никогда не дойдете, потому что расстояние будет всё больше и больше. Кривое пространство можно представить себе двумя способами. Первое - можно говорить про расширение Вселенной, а второе - можно говорить про сжатие человека. Вот человек - это мера всех вещей. Если вы идете отсюда и доходите рядом с пиком, то можно сказать, что ваши шаги становятся всё меньше, и меньше, и меньше, и меньше, и поэтому вам трудно, трудно идти. Это другое понимание того, что это такое за пузырь здесь - это просто место, где вы сами уменьшаетесь по сравнению со Вселенной. Это почти эквивалентные вещи.


Откуда мы всё это знаем? Откуда мы знаем, что это всё правда? Ну, во-первых, честно говоря, мы с самого начала ведь знали, что это - правда. Потому что, ну, такая красивая была теория, так всё запросто объясняла, что после этого как бы даже экспериментальные доказательства были не очень нужны, потому что Вселенная же, ну… большая? - Большая. Параллельные прямые не пересекаются? - Не пересекаются… И так далее. Другого объяснения не было.

Поэтому, как бы, вот есть экспериментальные данные. Но люди, всё равно, они хотят не просто так, а хотят, чтобы и еще что-нибудь предсказать бы, чего мы не знали, и чтобы это подтвердилось. И одно из предсказаний - эти вот квантовые флуктуации… Хорошо было бы их увидеть на небе, а мы их не видели. И один за другим стали запускаться разные системы, спутники, первый замечательный спутник - это был «Кобе» (COBE), запущенный в начале 90-х, и люди как раз в прошлом году получили нобелевские премии за это. Они увидели следующее. Они увидели, что микроволновое излучение, которое приходит к нам с разных сторон Вселенной, оно немножечко анизотропное.

Сейчас я объясню, о чём идет речь. В середине 60-х люди увидели, что на Землю идет излучение с температурой примерно 2,7 K. Чего-то такое, радиоволны, очень малоэнергичные, но со всех сторон. Потом они поняли, что это такое. Вселенная, когда она взорвалась, она была горячей. Потом, когда она расширилась, эти фотоны свою энергию потеряли, и когда они к нам дошли, они дошли вот такими дохленькими, с маленькой-маленькой энергией. И со всех сторон была та же самая энергия - 2,7 K. Температура - мера энергии. Потом начали смотреть более пристально и увидели, что вот в этом направлении температура 2,7 плюс еще примерно 10 –3 , а вот в этом направлении 2,7 минус еще 10 –3 . И почему же это такое? А вот почему: потому что Земля движется по отношению ко всей Вселенной. И есть вот это самое красное смещение. В ту сторону, куда мы движемся, там небо становится более голубым, фотоны приходят чуть-чуть более энергичные. А откуда движемся, они идут немножечко более красные. Это был простой эффект. И мы сразу поняли, с какой скоростью мы движемся по отношению к реликтовому излучению, всё было просто.

А потом люди захотели узнать, а нет ли еще какой-нибудь структуры? И вот запустили спутники, один из них «Кобе», а вот здесь, на картинке нарисован WMAP , спутник такой. И картинка, которая показывает как бы эволюцию во времени.

Сначала был Большой взрыв, потом было вот это ускорение Вселенной - инфляция, потом возникли квантовые флуктуации, которые замерзли, потом эти квантовые флуктуации, которые замерзли, привели к возникновению структуры небольшой во Вселенной. В это время Вселенная была очень горячей. Она была такой горячей, что сигналы до нас просто не доходили, так же как Солнце для нас здесь непрозрачно: оно очень горячее, поэтому мы вглубь Солнца можем видеть только на несколько сотен километров. Вот…


А потом вдруг Вселенная стала прозрачной для обычного излучения, потому что электроны объединились с протонами в атомы, и дальше, когда Вселенная стала более или менее нейтральной, свет стал проходить до нас. И вот мы видим то излучение, которое прошло от этого момента. И вот эти спутники, они посмотрели и померили температуру от разных точек во Вселенной с точностью до 10 –5 K. Вот представьте себе, что в лаборатории было трудно получить, там, температуру один градус Кельвина. Люди померили температуру Вселенной, 2,7 K плюс еще, там, много знаков после этого, и потом они померили неточности в этой температуре с точностью до 10 –5 . Ну, научная фантастика! Я никогда не верил вообще, что это возможно, но потом стал доверять друзьям-экспериментаторам, потому что мы-то знаем, что мы, теоретики, а вот экспериментаторы, оказывается…

Значит, вот, они померили такие маленькие пятнышки на небе, эти маленькие пятнышки - они здесь раскрашены. Мы знаем, что там, где энергия больше - это синее смещение, там где энергия меньше - это красное смещение, но здесь всё наоборот. Люди, которые эту карту раскрашивали, они понимали, что психология людей работает не так. Всё равно это не видимый свет, это радиоизлучение, поэтому не красный, не белый, никакой. Поэтому они его раскрасили искусственно. И вот то, что красное, это чтобы понять, что там горячо. А там, где синее, - это чтобы понять, что холодно. Поэтому они раскрасили прямо наоборот. Но не важно. Важно то, что вот эти пятнышки на небе, они с точностью до 10 –5 .

Если поглядеть повнимательнее на кусочек этого неба, то вот какая картинка здесь получается. Вот такие вот пятнышки. Что это такое? А вот что это. Возникли эти квантовые флуктуации скалярного поля, растащились на всё небо, замерзли там, изменили там немножечко геометрию Вселенной и плотность вещества, изменили за счет этого температуру реликтового излучения, которое к нам приходит, и поэтому эта температура, вот эти неоднородности, являются фотографией тех квантовых флуктуаций, которые возникли на последних стадиях инфляции - возникли и замерзли. То есть мы сейчас видим всё небо, и это всё небо является как фотографическая пластинка, на которой изображены квантовые флуктуации, возникшие на конечной стадии инфляции, примерно в 10 –30 с. Мы видим фотографию того, что произошло с 10 –30 -й секунды после Большого взрыва. Ну вот, чудеса, что тут можно сказать!

Мало того, что мы видим эту фотографию - изучили ее спектральные свойства. То есть эти пятнышки на больших угловых размерах имеют одну интенсивность, на маленьких угловых размерах они имеют другую интенсивность. Посчитали спектр этих флуктуаций и выяснили, что спектр - он вот такой: черные пятнышки - это то, что экспериментально видит этот самый спутник WMAP. С тех пор появились и еще другие результаты, которые вот в эту область простираются, я их сейчас здесь и приводить не стал. Но вот красная линия - это теоретические предсказания простейшей модели инфляционной Вселенной, а черные точки - это то, что экспериментально видно.

Здесь есть какие-то аномалии. При больших углах самые большие расстояния маленькие. Здесь l - то, что здесь, вот, на этой оси, - это количество гармоник. То есть чем больше l , тем больше гармоники, тем меньше угол. На маленьких углах прекрасное совпадение с экспериментальными данными. На больших углах что-то не до конца понятное происходит. Но может быть, это просто потому неточности, потому что нам дан-то один только кусок Вселенной: мы статистику изучаем, а статистика у нас - как вы подбросили монетку один раз, какая вам статистика? Вам надо подбросить ее сто раз, чтобы увидеть, что примерно 50 на 50 произошло. Поэтому на больших углах статистика не очень точная. Всё равно немножечко точки выпадают - есть некая проблема, что здесь происходит. Какие-то есть анизотропии во Вселенной, которые мы не можем объяснить в больших масштабах пока что. Но тем не менее, факт-то состоит в том, что все остальные точки, оказывается, прекрасно ложатся. И поэтому совпадение теории с экспериментом очень впечатляющее.


Я решил для себя, что я должен придумать способ объяснить изменение картины мира на простом языке. А картина мира… Сейчас, я пока что до этой самой теории многоликой Вселенной еще не дошел. Это пока что простая картинка… Так вот. Изменение картины мира, оно выглядит так. Что сидим мы на Земле, смотрим вокруг. И вот окружены этой хрустальной сферой. Дальше ничего мы видеть не можем, а есть там звёзды, планеты… И мы знаем, что мы используем нашу космологию как машину времени.

Если мы возьмем и посмотрим, там, на Солнце, мы видим Солнце, каким оно было несколько минут назад. Посмотрим на дальние звёзды. Мы увидим звёзды такими, какими они были много лет назад, сотни лет назад, тысячи лет назад.

Если мы еще дальше пойдем, то мы увидим вот это место, где Вселенная только что стала горячей, и в это время пошли к нам фотоны, это вот то, что эти спутники видят, вот мы увидели этот космический огонь. А дальше Вселенная непрозрачна. Дальше, ближе к этому Большому взрыву, который произошел вот эти 13 миллиардов лет назад, мы подойти не можем. Но, конечно, если бы использовать, например, нейтрино, которые в это время излучены, - мы знаем, что мы можем получать нейтрино, которые идут из центра Солнца, - можно было бы получить нейтрино, которые были испущены ближе к этому Большому взрыву. Сейчас мы видим только то, что было примерно 400 000 лет после Большого взрыва. Ну, все-таки… по сравнению с 13 миллиардами четыреста тысяч - довольно хорошо… Но если бы нейтрино, мы могли бы подойти гораздо ближе. Если бы гравитационные волны, мы могли бы подойти совсем близко к Большому взрыву, прямо вот буквально до вот таких вот времен от Большого взрыва.


А что говорит инфляция? А инфляция говорит вот что. Что на самом деле вот этот весь огонь космический, он возник после инфляции, и здесь есть экспоненциально много места, когда вся Вселенная была заполнена только скалярным полем, когда частиц никаких не было, а если бы они даже и были, то плотность их экспоненциально падала бы всё время, потому что Вселенная экспоненциально расширялась.

Поэтому что бы там ни было до инфляции, это совершенно не важно. Вселенная здесь была практически пустой, а энергия сидела в этом скалярном поле. А уж после того, как оно - помните эту картину: скалярное поле шло вниз, вниз, вниз, потом постепенно, когда оно доходило донизу, Хаббловская постоянная становилась маленькой - оно начинало осциллировать, в это время за счет своих осцилляций оно порождало нормальную материю. В это время Вселенная становилась горячей. В это время возник этот огонь. А мы раньше думали, что этот огонь от начала мира. Мы просто были как волки, которые боятся через огонь перепрыгнуть, мы знали, что вот это вот начало мира.

Выясняется сейчас, что для того, чтобы объяснить, почему этот огонь был так однородно распределен, нам надо было, чтобы была стадия, которая всё уравнивала. И это - инфляционная стадия.


И дальше можно по небу идти далеко-далеко за это место, потому что Вселенная вот такая вот большая, вот столько там было. И если мы пойдем дальше, мы увидим эти места, где возникают квантовые флуктуации, которые порождают галактики. И мы увидим те места, где эти флуктуации такие большие, что они порождали новые части Вселенной, которые расширялись быстро и которые порождаются и возникают и сейчас . Вселенная за счет этих квантовых флуктуаций порождает сама себя, не только галактики, но большие части самой себя. И она становится бесконечной и самовоспроизводящейся Вселенной.

Но помимо всего этого возникает еще один эффект. Вот я вам рассказывал про Вселенную, в которой было скалярное поле только одного типа. Скалярное поле с таким простым потенциалом… Мы знаем, что если мы хотим описать теорию элементарных частиц полностью, то нам нужно много скалярных полей. Например, в теории электрослабых взаимодействий имеется хиггсовское поле. И хиггсовское поле делает все частицы нашего тела тяжелыми. То есть электроны приобретают массы, протоны приобретают массы, фотоны не приобретают массы. Другие частицы приобретают массы. В зависимости от того, какое скалярное поле, они приобретают разную массу.

Но этим дело не кончается. Есть еще и теория Великого объединения, в которой возникает скалярное поле другого типа. Это другое поле. Если бы его не было, то не было бы принципиальной разницы между лептонами и барионами, тогда бы протоны могли легко распадаться на позитроны, не было бы разницы между материей и антиматерией. Для того чтобы объяснить, что там произошло, как эти вещи отделились, пришлось ввести еще одно скалярное поле… В принципе, этих скалярных полей может быть много. Если посмотреть на простейшую теорию - суперсимметричную - теорию Великого объединения, то окажется, что потенциальная энергия в ней рисуется вот так…

Ну, это тоже примерная картинка, на самом деле. Это некоторое поле, которое на самом деле является матрицей. И вот, при одном значении этого поля нету никакого нарушения симметрии между слабым и сильным электромагнитным взаимодействием, нет разницы между лептонами и барионами. Есть другое значение поля, в котором специальный тип нарушения симметрии, совсем не то, что мы видим. Есть третий минимум, в котором как раз физика нашего мира. В действительности надо еще написать вот наше скалярное поле, и если всё вместе написать, то будет десяток таких минимумов. У них у всех в первом приближении одинаковая энергия, и мы живем только в одном из этих минимумов.

И тогда возникает вопрос: а как же мы в этот минимум попали? А в самой ранней Вселенной, когда температура была горячей, существовал только вот этот минимум. И возникала проблема: как же мы тогда просочились вот в этот минимум-то, потому что в ранней Вселенной, в согласии с той теорией, которую мы здесь развивали вместе с Давидом Абрамовичем Киржницем , которому пришла эта идея ему в голову, насчет того, что в ранней Вселенной симметрия между всеми взаимодействиями восстанавливается. И вот тогда мы должны были бы сидеть здесь. А как же мы тогда попали вот сюда? И единственный способ, как мы туда могли попасть, это за счет квантовых флуктуаций, которые генерировались во время инфляции.

Но ведь это скалярное поле тоже скакало и тоже замерзало. И оно могло перескочить в этот минимум, перескочить в этот, перескочить обратно. Потом, если оно перескочило в один из этих минимумов, часть Вселенной, в которую мы попали в этот минимум, она начинала быть экспоненциально большой. Эта начинала быть экспоненциально большой, эта… И Вселенная разбилась на экспоненциально большое количество частей экспоненциально большого размера. Со всеми возможными типами физики в каждой из них.

Что это означает? Что, во-первых, может быть много скалярных полей. Во-вторых, может быть много разных минимумов. И после этого, в зависимости от того, куда мы попали, Вселенная могла стать разбитой на большие, экспоненциально большие области, каждая из которых по всем своим свойствам выглядит - локально - как огромная Вселенная. Каждая из них имеет огромные размеры. Если мы в ней живем, мы не будем знать, что другие части Вселенной существуют. А законы физики, эффективно, там будут разные.

То есть, в действительности, закон физики - он один и тот же может быть, у вас имеется одна и та же теория, - но это так же, как вода, которая может быть жидкой, газообразной, твердой. Но рыба может жить только в жидкой воде. Мы можем жить только вот в этом минимуме. Поэтому мы там и живем. Не потому, что этих частей Вселенной нет, а потому, что мы можем жить только здесь. Вот возникает эта картина, которая и называется «многоликая Вселенная», или «Multiverse» вместо «Universe».

Другим языком. Мы знаем, что наши свойства определяются генетическим кодом - кодом, который нам достался в наследство от наших родителей. Мы знаем также, что существуют мутации. Мутации происходят, когда что-нибудь странное происходит. Когда космические лучи, когда какая-нибудь химия не та - ну, вы лучше меня знаете, что нужно для того, чтобы мутации происходили. А мы знаем также, что всё вот огромное количество видов - необходимо было, чтобы эти мутации были.

Так вот, во время расширения Вселенной тоже были мутации. У вас Вселенная, даже если с самого начала она находилась в одном минимуме, то после этого она начинала прыгать из одного минимума в другой и разбивалась на разные типы Вселенной. И вот этот механизм квантовых флуктуаций, которые перебрасывали Вселенную из одного места, из одного состояния в другое - их можно назвать… это можно назвать механизмом космических мутаций.


(К сожалению, здесь, конечно, не видно часть того, что я собирался показывать. Ну, словами, значит… ) Ландшафт. Возникла такая терминология, потому что эта терминология, эта картинка оказалась очень важной в контексте теории струн. Люди уже давно говорили про теорию струн как лидирующего кандидата на теорию всех взаимодействий. Я в этом месте, к сожалению, «плаваю»… Хотя я и являюсь одним из соавторов вот этой картинки, которая здесь есть. То есть в течение многих лет люди не знали, как с помощью теории струн описать наше четырехмерное пространство.

Дело в том, что теорию струн легче всего сформулировать в десятимерном пространстве. Но в десятимерном пространстве шесть измерений являются лишними, надо как-нибудь от них отделаться. Идея состоит в том, что их надо как-нибудь сжать в маленький клубочек, чтобы их никто не видел, чтобы в шесть направлений никак никто не мог пойти, а мы видели бы только четыре большие измерения - три пространства и одно время. И вот мы гуляли бы в этих трех пространственных измерениях и думали бы, что наша Вселенная трехмерная плюс одно время, а в действительности где-то в сердце Вселенной хранилась бы информация о том, что она происхождение имеет пролетарское - десятимерное. И хотелось бы ей стать десятимерной тоже. Вот в теории струн так всё время получалось, что она хочет быть десятимерной, и до последнего времени не знали, как сделать ее четырехмерной, оставить ее нормальной. Во всех вариантах получалось, что это состояние неустойчивое.

В котором кратко описывает возникновение и развитие теории инфляционной вселенной, дающей новое объяснение Большому взрыву и предсказывающейт существование наряду с нашей множества других вселенных.

Космология в некотором роде сродни философии. Во-первых, по обширности своего предмета исследования - им является вся Вселенная в целом. Во-вторых, по тому, что некоторые посылки в ней принимаются учеными в качестве допустимых без возможности провести какой-либо проверочный эксперимент. В-третьих, предсказательная сила многих космологических теорий заработает только если мы сможем попасть в другие вселенные - чего ожидать не приходится.

Однако из этого всего вовсе не следует, что современная космология - это такая рукомахательная и не совсем научная область, где можно, подобно древним грекам, лежать в тени дерев и гипотетизировать о количестве измерений пространства-времени - десять их или одиннадцать? Космологические модели базируются на наблюдательных данных астрономии, и чем больше этих данных, тем больше материала для космологических моделей - которые должны эти данные связывать и согласовывать между собой. Сложность в том, что в космологии затрагиваются фундаментальные вопросы требующие некоторых изначальных предположений, которые выбираются авторами моделей исходя из их личных представлений о гармонии мироздания. В этом, вообще-то, нет ничего исключительного: при построении всякой теории нужно брать какие-то опорные точки. Просто для космологии, которая оперирует самыми большими масштабами пространства и времени, их выбрать особенно трудно.

Для начала несколько важных определений.

Космология - наука, изучающая свойства нашей Вселенной как единого целого. Однако в ней пока нет какой-то единой теории, которая бы описывала все происходящее и когда-либо произошедшее. Сейчас существуют четыре основных космологических модели , которые пытаются описать происхождение и эволюцию вселенной и каждая из них имеет свои плюсы и минусы, своих адептов и противников. Модель Лямбда-CDM считается наиболее авторитетной, хотя и не бесспорной. Важно понимать, что космологические модели не обязательно соперничают друг с другом. Просто они могут описывать принципиально разные этапы эволюции. Например, Лябмда-CDM вообще не рассматривает вопрос Большого взрыва, хотя прекрасно объясняет все, что произошло после него.


Структура мультивселенной с пузырями мини-вселенных внутри нее.

Рисунок: Andrei Linde

Удивительно в этом то, что космологическая постоянная (то есть энергия вакуума) не изменяется во времени по мере расширения вселенной, в то время как плотность вещества как раз меняется совершенно предсказуемо и зависит от объема пространства. Получается, что в ранней вселенной плотность вещества намного превосходила плотность вакуума, в будущем по мере разлета галактик плотность вещества будет уменьшаться. Так почему же именно сейчас, когда мы можем измерить их, они так близки по значению друг к другу?

Единственным известным способом объяснить такое невероятное совпадение, не привлекая какие-то ненаучные гипотезы, можно только с помощью антропного принципа и инфляционной модели - то есть из множества существующих вселенных жизнь зародилась в той, где космологическая постоянная в данный момент времени оказалась равна плотности материи (это в свою очередь определяет время, прошедшее с начала инфляции, и дает как раз достаточно времени для формирования галактик, образования тяжелых элементов и развития жизни).

Еще одним поворотным моментом в развитии инфляционной модели был выход в 2000 году статьи Буссо и Полчински , в которой они предложили использовать теорию струн для объяснения большого набора разных типов вакуума, в каждом из которых космологическая постоянная могла принимать свои значения. А когда в работу над объединением теории струн и инфляционной модели включился один из создателей самой теории струн, Леонард Сасскинд, это не только помогло составить более законченную картину, которую сейчас называют «антропным ландшафтом теории струн», но и в некотором роде добавило вес всей модели в научном мире. Число статей по инфляции увеличилось за год с четырех до тридцати двух.

Инфляционная модель претендует на то, чтобы не просто объяснить тонкую настройку фундаментальных констант, но и помочь обнаружить некоторые фундаментальные параметры, которые определяют величину этих констант. Дело в том, что в Стандартной модели сегодня 26 параметров (космологическая постоянная стала последним из открытых), которые определяют величину всех констант, с которыми вы когда-либо сталкивались в курсе физики. Это достаточно много и уже Эйнштейн считал, что их количество можно уменьшить. Он предложил теорему, которая, по его словам, не может в настоящее время быть более чем верой, о том, что в мире нет произвольных констант: он так мудро устроен, что должны быть какие-то логические связи между казалось бы совсем разными величинами. В инфляционной модели эти константы могут быть всего лишь параметром окружающей среды, который кажется нам локально неизменным из-за эффекта инфляции, хотя будет совершенно иным в другой части вселенной и определяется еще не выявленными, но наверняка существующими истинно фундаментальными параметрами.

В заключении статьи Линде пишет, что критика инфляционной модели часто основана на том, что мы не сможем в обозримом будущем проникнуть в другие вселенные. Поэтому проверить теорию невозможно и у нас до сих пор нет ответов на самые базовые вопросы: Почему вселенная такая большая? Почему она однородна? Почему она изотропна и не вращается как наша галактика? Однако, если взглянуть на эти вопросы под другим углом, то оказывается, что и без путешествия в другие мини-вселенные у нас есть множество экспериментальных данных. Таких как размер, плоскость, изотропность, однородность, значение космологической постоянной, соотношение масс протона и нейтрона и так далее. И единственное на сегодняшний день разумное объяснение этим и многим другим экспериментальным данным дается в рамках теории мультиверсов и, следовательно, модели инфляционной космологии.


, 1990. Андрей Линде

«The Anthropic landscape of string theory» 2003. Леонард Сасскинд


Марат Мусин

Почему против трех астрофизиков ополчились тридцать три известных ученых самых разных специализаций во главе со Стивеном Хокингом, по каким сценариям образовывалась наша Вселенная и верна ли инфляционная теория ее расширения, сайт разбирался вместе со специалистами.

Стандартная теория Большого взрыва и ее проблемы

Теория горячего Большого взрыва установилась в середине XX века, а общепризнанной стала пару десятилетий спустя после открытия реликтового излучения. Она объясняет многие свойства окружающей нас Вселенной и предполагает, что Вселенная возникла из некоторого начального сингулярного состояния (формально бесконечно плотного) и с тех пор непрерывно расширяется и охлаждается.

Само реликтовое излучение - световое «эхо», родившееся спустя всего 380 000 лет после , - оказалось невероятно ценным источником информации. Львиная доля современной наблюдательной космологии связана с анализом различных параметров реликтового излучения. Оно достаточно однородно, его средняя температура по различным направлениям меняется в масштабе всего 10 –5 , причем эти неоднородности равномерно распределены по небу. В физике такое свойство принято называть статистической изотропией. Это означает, что локально такая величина изменяется, но глобально все выглядит одинаково.

Схема расширения Вселенной

NASA/WMAP Science Team/Wikimedia Commons

Исследуя возмущения реликтового излучения, астрономы с высокой точностью вычисляют многие величины, характеризующие Вселенную в целом: соотношение обычной материи, темной материи и темной энергии, возраст Вселенной, глобальную геометрию Вселенной, вклад нейтрино в эволюцию крупномасштабной структуры и другие.

Несмотря на «общепринятость» теории Большого взрыва, у нее были и недостатки: она не давала ответа на некоторые вопросы возникновения Вселенной. Основные из них получили названия «проблема горизонта» и «проблема плоскостности».

Первая связана с тем, что скорость света конечна, а реликтовое излучение статистически изотропно. Дело в том, что на момент рождения реликтового излучения даже свет не успел пройти расстояние между теми далеко отстоящими на небе точками, откуда мы сегодня его улавливаем. Поэтому непонятно, почему разные области настолько одинаковы, ведь они еще не успели обменяться сигналами с момента рождения Вселенной, их причинные горизонты не пересекаются.

Вторая проблема, проблема плоскостности, связана с неотличимой от нуля (на уровне точности современных экспериментов) глобальной кривизной пространства. Проще говоря, на больших масштабах пространство Вселенной плоское, а из теории горячего Большего взрыва не следует, что плоское пространство более предпочтительно, чем другие варианты кривизны. Поэтому близость этой величины к нулю как минимум неочевидна.

Тридцать три против троих

Для решения этих проблем астрономы создали космологические теории следующего поколения, наиболее успешная из которых - теория инфляционного расширения Вселенной (проще ее называют теорией инфляции). Повышение цен на товары тут ни при чем, хотя оба термина происходят от одного латинского слова - inflatio - «вздутие».

Инфляционная модель Вселенной предполагает, что до горячей стадии (то, что в обычной теории Большого взрыва считается началом времени) существовала другая эпоха с совсем иными свойствами. В то время пространство расширялось экспоненциально быстро благодаря заполнявшему его специфическому полю. За крохотные доли секунды пространство растянулось в невероятное количество раз. Это решило обе вышеупомянутые проблемы: Вселенная оказалась в целом однородной, так как произошла из существовавшего на предыдущей стадии чрезвычайно малого объема. К тому же, если в ней и были какие-то геометрические неоднородности, они разгладились во время инфляционного расширения.

В становлении теории инфляции приняло участие много ученых. Первые модели независимо друг от друга предложили физик, доктор философии Корнеллского университета Алан Гут в США и физик-теоретик, специалист в области гравитации и космологии Алексей Старобинский в СССР около 1980 года. Они отличались механизмами (Гут рассматривал ложный вакуум, а Старобинский - модифицированную общую теорию относительности), но приводили к похожим выводам. Некоторые проблемы изначальных моделей решил советский физик, доктор физико-математических наук, сотрудник Физического института имени П.Н. Лебедева Андрей Линде, который ввел понятие медленно меняющегося потенциала (slow-roll inflation) и объяснил с его помощью завершение стадии экспоненциального расширения. Следующим важным шагом было понимание, что инфляция не порождает идеально симметричную Вселенную, так как необходимо учитывать квантовые флуктуации. Это сделали советские физики, выпускники МФТИ Вячеслав Муханов и Геннадий Чибисов.

Норвежский король Харальд награждает Алана Гута, Андрея Линде и Алексея Старобинского (слева направо) премией Кавли по физике. Осло, сентябрь 2014 года.

Norsk Telegrambyra AS/Reuters

В рамках теории инфляционного расширения ученые делают проверяемые предсказания, некоторые из которых уже подтверждены, но одно из основных - существование реликтовых гравитационных волн - пока подтвердить не удается. Первые попытки их зафиксировать уже делаются , однако на данном этапе это остается за рамками технологических возможностей человечества.

Тем не менее у инфляционной модели Вселенной есть противники, которые считают, что она сформулирована слишком общо, вплоть до того, что с ее помощью можно получить любой результат. Некоторое время эта полемика шла в научной литературе , но недавно группа из трех астрофизиков IS&L (сокращение образовано по первым буквам фамилий ученых - Ijjas, Steinhardt и Loeb - Анны Ийас, Пола Стейнхардта и Абрахама Леба) опубликовала научно-популярное изложение своих претензий к инфляционной космологии в издании Scientific American. В частности, IS&L, ссылаясь на карту температур реликтового излучения, полученную при помощи спутника Planck, считают, что теория инфляции не может быть оценена научными методами. Вместо теории инфляции астрофизики предлагают свой вариант развития событий: якобы Вселенная началась не с Большого взрыва, а с Большого отскока - стремительного сжатия некоей «предыдущей» Вселенной.

В ответ на эту статью 33 ученых, среди которых и основоположники теории инфляции (Алан Гут, Алексей Старобинский, Андрей Линде) и другие известные ученые, например Стивен Хокинг, опубликовали в том же журнале ответное письмо, в котором они категорически не соглашаются с претензиями IS&L.

сайт попросил космологов и астрофизиков высказаться по поводу обоснованности этих претензий, сложностей с интерпретацией предсказаний инфляционных теорий и необходимости пересмотра подхода к теории ранней Вселенной.

Один из основоположников теории инфляционного расширения, профессор физики Стэнфордского университета Андрей Линде, считает претензии надуманными, а сам подход критиков - недобросовестным: «Если отвечать подробно, то получится большая научная статья, а коротко - будет похоже на агитацию. Этим люди и пользуются. Вкратце, лидер критиков - Стейнхардт, который в течение 16 лет пытается создать альтернативу [теории] инфляции, а в его статьях - ошибка на ошибке. Ну, а когда у самого не получается, то появляется желание обругать более популярные теории, применяя методы, хорошо известные из учебников по истории. Большинство теоретиков перестало их читать, но журналисты очень любят. Физика здесь почти что ни при чем».

Кандидат физико-математических наук, сотрудник Института ядерный исследований РАН Сергей Миронов напоминает, что научная истина не может быть рождена в полемике на непрофессиональном уровне. Критическая статья, по его мнению, написана научно и аргументированно, там сведены вместе различные проблемы инфляционной теории. Подобные обзоры необходимы, они помогают предотвратить закостеневание науки.

Однако ситуация меняется, когда такая дискуссия переходит на страницы популярного издания, потому что, правильно ли таким образом продвигать свою научную идею, вопрос спорный. В связи с этим Миронов отмечает, что ответ на критику смотрится некрасиво, так как одна часть из его авторов вообще не специалисты в рассматриваемой области, а другая сама пишет популярные тексты про инфляционную модель. Миронов обращает внимание, что ответная статья написана так, будто авторы даже не читали работу IS&L, и они не привели никаких контраргументов к ней. Утверждения же о провокационной манере, в которой написана заметка с критикой, означают, что «авторы ответа просто повелись на троллинг».

«Доля истины»

Тем не менее ученые, в том числе сторонники инфляционной модели, признают ее недостатки. Физик Александр Виленкин, профессор и директор института космологии в Университете Тафтса в Медфорде (США), который внес важный вклад в становление современной теории инфляции, замечает: «В заявлениях Стейнхардта и коллег есть доля истины, но я думаю, что их претензии чрезвычайно преувеличены. Инфляция предсказывает существование множества областей, подобных нашей, с начальными условиями, которые определяются квантовыми флуктуациями. Теоретически, любые начальные условия возможны с некоторой вероятностью. Проблема заключается в том, что мы не знаем, как посчитать эти вероятности. Количество областей каждого типа бесконечно, поэтому приходится сравнивать бесконечные числа - эта ситуация называется проблемой меры. Конечно, отсутствие единой меры, выводимой из фундаментальной теории, является тревожным знаком».

Упомянутое множество моделей Сергей Миронов относит к недостаткам теории, так как это позволяет подогнать ее под любые экспериментальные наблюдения. А это означает, что теория не удовлетворяет критерию Поппера (согласно этому критерию теория считается научной, если ее можно опровергнуть при помощи эксперимента, - прим. сайт) , по крайней мере в обозримом будущем. Также к проблемам теории Миронов относит тот факт, что в рамках инфляции начальные условия требуют тонкой подстройки параметров, что делает ее в некотором смысле не натуральной. Специалист по ранней Вселенной, кандидат физико-математических наук, сотрудник Научного института Гран-Сассо Национального института ядерной физики (Италия) Сабир Рамазанов также признает реальность этих проблем, но отмечает, что их существование не обязательно означает, что инфляционная теория неверна, но ряд ее аспектов действительно заслуживает более глубокого осмысления.

Создатель одной из первых инфляционных моделей, академик РАН, главный научный сотрудник Института теоретической физики РАН Алексей Старобинский поясняет, что одна из простейших моделей, которую Андрей Линде предложил в 1983 году, действительно была опровергнута. Она предсказывала слишком много гравитационных волн, поэтому недавно Линде указал, что необходимо пересмотреть инфляционные модели.

Критический эксперимент

Астрономы обращают особое внимание на то, что важным предсказанием, которое стало возможным благодаря теории инфляции, стало предсказание реликтовых гравитационных волн. Специалист по анализу реликтового излучения и наблюдательной космологии, доктор физико-математических наук, ведущий научный сотрудник Специальной астрофизической обсерватории РАН Олег Верходанов считает этот прогноз знаменательным наблюдательным тестом для простейших вариантов инфляционного расширения, в то время как для отстаиваемой критиками теории «Большого отскока» такого решающего эксперимента нет.

Иллюстрация теории Большого отскока

Wikimedia Commons

Поэтому говорить о другой теории можно будет только в том случае, если на реликтовые волны установят серьезные ограничения. Сергей Миронов тоже называет потенциальное открытие таких волн серьезным аргументом в пользу инфляции, однако отмечает, что пока их амплитуда только ограничивается, что уже позволило отмести некоторые варианты, на место которых приходят другие, не предсказывающие слишком сильных первичных гравитационных возмущений. Сабир Рамазанов согласен с важностью этого теста и, более того, считает, что инфляционная теория не может считаться доказанной, пока это явление не будет открыто в наблюдениях. Поэтому пока ключевое предсказание инфляционной модели о существовании первичных гравитационных волн с плоским спектром не подтверждено, говорить об инфляции как о физической реальности рано.

«Правильный ответ, от которого старательно пытаются увести читателя»

Алексей Старобинский подробно разобрал претензии IS&L. Он выделил три главных утверждения.

Утверждение 1. Инфляция предсказывает что угодно. Или ничего.

«Правильный ответ, от которого старательно пытаются увести читателя IS&L, состоит в том, что такие слова, как "инфляция", "квантовая теория поля", "модель элементарных частиц", очень общие: они объединяют множество разных моделей, отличающихся степенью сложности (например, количеством сортов нейтрино)», - разъясняет Старобинский.

После того как ученые зафиксируют входящие в каждую конкретную модель свободные параметры из экспериментов или наблюдений, предсказания модели считаются однозначными. Современная Стандартная модель элементарных частиц содержит около 20 таких параметров (это главным образом массы кварков, массы нейтрино и угол их смешивания). Простейшая из жизнеспособных инфляционных моделей содержит только один такой параметр, величина которого фиксируется измеренной амплитудой начального спектра неоднородностей материи. После этого все остальные предсказания однозначны.

Академик уточняет: «Конечно, ее можно усложнить, добавив новые члены различной физической природы, каждый из которых будет входить с новым свободным числовым параметром. Но, во-первых, и в этом случае предсказания будут не "что угодно", а определенными. А во-вторых, и это самое главное, сегодняшние наблюдения показывают, что эти члены не нужны, на современном уровне точности порядка 10% их нет!»

Утверждение 2. Маловероятно, что в рассматриваемых моделях вообще возникнет инфляционная стадия, поскольку в них у потенциальной энергии инфлатона есть длинное плоское «плато».

«Утверждение ложно, - категоричен Старобинский. - В моих работах 1983 и 1987 годов было доказано, что инфляционный режим в моделях такого типа является общим, то есть он возникает во множестве начальных условий с ненулевой мерой». Впоследствии это было доказано и по более строгим математическим критериям, с численными симуляциями и т. д.

Результаты эксперимента Planck, по словам Старобинского, подвергли сомнению точку зрения, которую неоднократно высказывал Андрей Линде. Согласно ей инфляция должна обязательно начинаться на планковской плотности материи, и, уже начиная с этого предельного для классического описания пространства-времени параметра, материя была распределена однородно. Однако в тех доказательствах, о которых шла речь выше, это не предполагалось. То есть в моделях такого типа перед стадией инфляционного расширения находятся анизотропная и неоднородная стадия эволюции Вселенной с большей, чем при инфляции, кривизной пространства-времени.

«Чтобы было понятнее, воспользуемся следующей аналогией, - поясняет космолог. - В общей теории относительности одним из общих решений являются вращающиеся черные дыры, описываемые метрикой Керра. То, что черные дыры - это общие решения, не значит, что они есть повсюду. Например, их нет в Солнечной системе и в ее окрестностях (к счастью для нас). А значит это то, что, поискав, мы их обязательно найдем. Так оно и произошло». В случае инфляции происходит то же самое – эта промежуточная стадия есть не во всех решениях, но в достаточно широком их классе, так что она вполне может возникнуть в однократной реализации, то есть для нашей Вселенной, которая существует в одном экземпляре. А вот то, насколько вероятно это однократное событие, полностью определяется нашими гипотезами о том, что предшествовало инфляции.

Утверждение 3. Квантовое явление «вечной инфляции», которое имеет место почти во всех инфляционных моделях и влечет за собой возникновение мультивселенной, приводит к полной неопределенности предсказаний инфляционного сценария: «Все, что может случиться, случается».

«Утверждение частично ложно, частично не имеет отношения к наблюдаемым эффектам в нашей Вселенной, - непреклонен академик. - Хотя слова в кавычках заимствованы IS&L из обзоров Виленкина и Гута, их смысл искажен. Там они стояли в другом контексте и значили не больше банального даже для школьника замечания, что уравнения физики (например, механики) можно решать для любых начальных условий: где-нибудь и когда-нибудь эти условия реализуются».

Почему «вечная инфляция» и образование «мультивселенной» не влияют на все процессы в нашей Вселенной после конца инфляционной стадии? Дело в том, что они происходят вне нашего светового конуса прошлого (кстати, и будущего тоже)», - объясняет Старобинский. Поэтому нельзя сказать однозначно, происходят ли они в нашем прошлом, настоящем или будущем. «Строго говоря, это верно с точностью до экспоненциально малых квантово-гравитационных эффектов, но во всех существующих последовательных расчетах такими эффектами всегда пренебрегали», - подчеркивает академик.

«Я не хочу сказать, что не интересно исследовать то, что лежит вне нашего светового конуса прошлого, - продолжает Старобинский, - но прямо с наблюдательными данными это пока не связано. Однако и здесь IS&L сбивают читателя с толку: если описывать "вечную инфляцию" правильно, то при заданных условиях в начале инфляционной стадии никакого произвола в предсказаниях не возникает (хотя не все мои коллеги с этим согласны). Более того, многие предсказания, в частности спектр неоднородностей материи и гравитационных волн, возникающих в конце инфляции, от этих начальных условий вообще не зависят», - добавляет космолог.

«Нет острой необходимости в пересмотре основ физики ранней Вселенной»

Олег Верходанов отмечает, что пока отказываться от текущей парадигмы нет оснований: «Конечно, у инфляции есть простор для интерпретации - семейство моделей. Но и среди них можно выбирать наиболее соответствующие распределению пятен на карте реликтового излучения. Пока большинство результатов миссии Planck играет в пользу инфляции». Алексей Старобинский отмечает, что с данными эксперимента Planck, к которым апеллируют IS&L, хорошо согласуется самая первая модель с де-ситтеровской стадией, предшествовавшей горячему Большому взрыву, которую он предложил еще в 1980 году (во время де-ситтеровской стадии, которая длилась около 10 –35 секунды, Вселенная быстро расширялась, заполняющий ее вакуум как бы растягивался без изменения своих свойств, - прим. сайт).

С ним в целом согласен и Сабир Рамазанов: «Ряд предсказаний - гауссовость спектра первичных возмущений, отсутствие мод постоянной кривизны, наклон спектра - нашел подтверждение в данных WMAP и Planck. Инфляция заслуженно играет главенствующую роль в качестве теории ранней Вселенной. На данный момент нет острой необходимости в пересмотре основ физики ранней Вселенной». Космолог Сергей Миронов также признает положительные качества этой теории: «Сама идея инфляции чрезвычайно элегантна, она одним махом позволяет решить все принципиальные проблемы теории горячего Большого взрыва».

«В целом итог по статье IS&L – пустая болтовня от начала до конца, - подытоживает Старобинский. - Она не имеет отношения к реальным проблемам, над которыми сейчас работают космологи». И в то же время академик добавляет: «Другое дело, что любая модель - как общая теория относительности Эйнштейна, как современная модель элементарных частиц, так и модель инфляции - не есть последнее слово науки. Она всегда только приближенна, и на каком-то уровне точности обязательно появятся малые поправки к ней, из которых мы многое узнаем, так как за ними будет стоять новая физика. Именно такие малые поправки и ищут сейчас астрономы».

С середины 1970-х годов физики начали работать над теоретическими моделями Великого объединения трех фундаментальных взаимодействий - сильного, слабого и электромагнитного. Многие из этих моделей приводили к заключению, что вскоре после Большого взрыва должны были в изобилии рождаться очень массивные частицы, несущие одиночный магнитный заряд. Когда возраст Вселенной достиг 10 -36 секунды (по некоторым оценкам, даже несколько раньше), сильное взаимодействие отделилось от электрослабого и обрело самостоятельность. При этом в вакууме образовались точечные топологические дефекты с массой в 10 15 - 10 16 большей, чем масса тогда еще не существовавшего протона. Когда, в свою очередь, электрослабое взаимодействие разделилось на слабое и электромагнитное и появился настоящий электромагнетизм, эти дефекты обрели магнитные заряды и начали новую жизнь - в виде магнитных монополей.


Разделение фундаментальных взаимодействий в нашей ранней Вселенной носило характер фазового перехода. При очень высоких температурах фундаментальные взаимодействия были объединены, но при остывании ниже критической температуры разделения не произошло [это можно сравнить с переохлаждением воды]. В этот момент энергия скалярного поля, связанного с объединением, превысила температуру Вселенной, что наделило поле отрицательным давлением и послужило причиной космологической инфляции. Вселенная стала очень быстро расширяться, и в момент нарушения симметрии (при температуре около 10 28 К) ее размеры увеличились в 10 50 раз. Скалярное поле, связанное с объединением взаимодействий, исчезло, а его энергия трансформировалась в дальнейшее расширение Вселенной.

ГОРЯЧЕЕ РОЖДЕНИЕ



Эта красивая модель поставила космологию перед малоприятной проблемой. «Северные» магнитные монополи аннигилируют при столкновении с «южными», но в остальном эти частицы стабильны. Из-за огромной по меркам микромира массы нанограммового масштаба вскоре после рождения они были обязаны замедлиться до нерелятивистских скоростей, рассеяться по пространству и сохраниться до наших времен. Согласно стандартной модели Большого взрыва, их нынешняя плотность должна приблизительно совпадать с плотностью протонов. Но в этом случае общая плотность космической энергии как минимум в квадриллион раз превышала бы реальную.
Все попытки обнаружить монополи до сих пор завершались неудачей. Как показал поиск монополей в железных рудах и морской воде, отношение их числа к числу протонов не превышает 10 -30 . Либо этих частиц вообще нет в нашей области пространства, либо столь мало, что приборы неспособны их зарегистрировать, несмотря на четкую магнитную подпись. Это подтверждают и астрономические наблюдения: наличие монополей должно сказываться на магнитных полях нашей Галактики, а этого не обнаружено.
Конечно, можно допустить, что монополей вообще никогда не было. Некоторые модели объединения фундаментальных взаимодействий и в самом деле не предписывают их появления. Но проблемы горизонта и плоской Вселенной остаются. Так получилось, что в конце 1970-х космология столкнулась с серьезными препятствиями, для преодоления которых явно требовались новые идеи.

ОТРИЦАТЕЛЬНОЕ ДАВЛЕНИЕ


И эти идеи не замедлили появиться. Главной из них была гипотеза, согласно которой в космическом пространстве помимо вещества и излучения существует скалярное поле (или поля), создающее отрицательное давление. Такая ситуация выглядит парадоксальной, однако же она встречается в повседневной жизни. Система с положительным давлением, например сжатый газ, при расширении теряет энергию и охлаждается. Эластичная лента, напротив, пребывает в состоянии с отрицательным давлением, ведь, в отличие от газа, она стремится не расшириться, а сжаться. Если такую ленту быстро растянуть, она нагреется и ее тепловая энергия возрастет. При расширении Вселенной поле с отрицательным давлением копит энергию, которая, высвобождаясь, способна породить частицы и кванты света.

ПЛОСКАЯ ПРОБЛЕМА

АСТРОНОМЫ УЖЕ ДАВНО УВЕРИЛИСЬ В ТОМ, ЧТО ЕСЛИ НЫНЕШНЕЕ КОСМИЧЕСКОЕ ПРОСТРАНСТВО И ДЕФОРМИРОВАНО, ТО ДОВОЛЬНО УМЕРЕННО.
Модели Фридмана и Леметра позволяют вычислить, какой была искривленность пространства вскоре после Большого взрыва. Кривизна оценивается с помощью безразмерного параметра Ω, равного отношению средней плотности космической энергии к тому ее значению, при котором эта кривизна делается равна нулю, а геометрия Вселенной, соответственно, становится плоской. Лет 40 назад уже не было сомнений, что если этот параметр и отличается от единицы, то не больше, чем в десять раз в ту или иную сторону. Отсюда следует, что через одну секунду после Большого взрыва он отличался от единицы в большую или меньшую сторону всего лишь на 10 -14 ! Случайна такая фантастически точная «настройка» или обусловлена физическими причинами? Именно так в 1979 году сформулировали задачу американские физики Роберт Дике и Джеймс Пиблз.

ПЛОСКАЯ ПРОБЛЕМА


Отрицательное давление может иметь различную величину. Но существует особый случай, когда оно равно плотности космической энергии с обратным знаком. При таком раскладе эта плотность остается постоянной при расширении пространства, поскольку отрицательное давление компенсирует растущее «разрежение» частиц и световых квантов. Из уравнений Фридмана-Леметра следует, что Вселенная в этом случае расширяется экспоненциально.

Гипотеза экспоненциального расширения позволяет разрешить все три проблемы, приведенные выше. Предположим, что Вселенная возникла из крошечного «пузырька» сильно искривленного пространства, который претерпел превращение, наделившее пространство отрицательным давлением и тем заставившее его расширяться по экспоненциальному закону. Естественно, что после исчезновения этого давления Вселенная возвратится к прежнему «нормальному» расширению.

РЕШЕНИЕ ПРОБЛЕМ


Будем считать, что радиус Вселенной перед выходом на экспоненту всего на несколько порядков превышал планковскую длину, 10 -35 м. Если в экспоненциальной фазе он вырастет, скажем, в 10 50 раз, то к ее концу достигнет тысяч световых лет. Каким бы ни было отличие параметра кривизны пространства от единицы до начала расширения, к его концу оно уменьшится в 10 -100 раз, то есть пространство станет идеально плоским!
Аналогично решается проблема монополей. Если топологические дефекты, ставшие их предшественниками, возникли до или даже в процессе экспоненциального расширения, то к его концу они должны отдалиться друг от друга на исполинские расстояния, С тех пор Вселенная еще изрядно расширилась, и плотность монополей упала практически до нуля. Вычисления показывают, что даже если исследовать космический кубик с ребром а миллиард световых лет, то там с высочайшей степенью вероятности не найдется ни единого монополя.
Гипотеза экспоненциального расширения подсказывает и простое избавление от проблемы горизонта. Предположим, что размер зародышевого «пузырька», положивше- го начало нашей Вселенной, не превышал пути, который успел пройти свет после Большого взрыва. В этом случае в нем могло установиться тепловое равновесие, обеспечившее равенство температур по всему объему, которое сохранилось при экспоненциальном расширении. Подобное объяснение присутствует во многих учебниках космологии, однако можно обойтись и без него.

ИЗ ОДНОГО ПУЗЫРЯ


На рубеже 1970-1980-х несколько теоретиков, первым из которых стал советский физик Алексей Старобинский, рассмотрели модели ранней эволюции Вселенной с короткой стадией экспоненциального расширения. В 1981 году американец Алан Гут опубликовал работу, привлекшую к этой идее всеобщее внимание. Он первым понял, что подобное расширение (скорее всего, завершившееся на возрастной отметке в 10 -34 с) снимает проблему монополей, которыми он поначалу и занимался, и указывает путь к разрешению неувязок с плоской геометрией и горизонтом. Гут красиво назвал такое расширение космологической инфляцией, и этот термин стал общепринятым.

ТАМ, ЗА ГОРИЗОНТОМ

ПРОБЛЕМА ГОРИЗОНТА СВЯЗАНА С РЕЛИКТОВЫМ ИЗЛУЧЕНИЕМ, ИЗ КАКОЙ БЫ ТОЧКИ ГОРИЗОНТА ОНО НИ ПРИШЛО, ЕГО ТЕМПЕРАТУРА ПОСТОЯННА С ТОЧНОСТЬЮ ДО 0,001%.
В 1970-х этих данных еще не было, но астрономы и тогда полагали, что колебаний не превышают 0,1%. В этом и состояла загадка. Кванты микроволнового излучения разлетелись по космосу приблизительно через 400 000 лет после Большого взрыва. Если Вселенная все время эволюционировала по Фрид-ману-Леметру, то фотоны, пришедшие на Землю с участков небесной сферы, разделенных угловым расстоянием более двух градусов, были испущены из областей пространства, которые тогда не могли иметь друг с другом ничего общего. Между ними лежали расстояния, которые свет попросту не успел бы преодолеть за все время тогдашнего существования Вселенной - иначе говоря, их космологические горизонты не пересекались. Поэтому у них не было возможности установить друг с другом тепловое равновесие, которое почти точно уравняло бы их температуры. Но если эти области не были связаны в ранние моменты образования, как они оказались практически одинаково нагреты? Если это и совпадение, то слишком уж странное.

ПЛОСКАЯ ПРОБЛЕМА



Но модель Гута все же имела серьезный недостаток. Она допускала возникновение множества инфляционных областей, претерпевающих столкновения друг с другом. Это вело к формированию сильно неупорядоченного космоса с неоднородной плотностью вещества и излучения, который совершенно не похож на реальное космическое пространство. Однако вскоре Андрей Линде из Физического института Академии наук (ФИАН), а чуть позже Андреас Альбрехт с Полом Стейнхардтом из Университета Пенсильвании показали, что если изменить уравнение скалярного поля, то все становится на свои места. Отсюда следовал сценарий, по которому вся наша наблюдаемая Вселенная возникла из одного вакуумного пузыря, отделенного от других инфляционных областей непредставимо большими расстояниями.

ХАОТИЧЕСКАЯ ИНФЛЯЦИЯ


В 1983 году Андрей Линде совершил очередной прорыв, разработав теорию хаотической инфляции, которая позволила объяснить и состав Вселенной, и однородность реликтового излучения. Во время инфляции любые предшествующие неоднородности скалярного поля растягиваются настолько, что практически исчезают. На завершающем этапе инфляции это поле начинает быстро осциллировать вблизи минимума своей потенциальной энергии. При этом в изобилии рождаются частицы и фотоны, которые интенсивно взаимодействуют друг с другом и достигают равновесной температуры. Так что по окончании инфляции мы имеем плоскую горячую Вселенную, которая затем расширяется уже по сценарию Большого взрыва. Этот механизм объясняет, почему сегодня мы наблюдаем реликтовое излучение с мизерными колебаниями температуры, которые можно приписать квантовым флуктуациям в первой фазе существования Вселенной. Таким образом, теория хаотической инфляции разрешила проблему горизонта и без допущения, что до начала экспоненциального расширения зародышевая Вселенная пребывала в состоянии теплового равновесия.

Согласно модели Линде, распределение вещества и излучения в пространстве после инфляции просто обязано быть почти идеально однородным, за исключением следов первичных квантовых флуктуаций. Эти флуктуации породили локальные колебания плотности, которые со временем дали начало галактическим скоплениям и разделяющим их космическим пустотам. Очень важно, что без инфляционного "растяжения" флуктуации оказались бы слишком слабыми и не смогли бы стать зародышами галактик. В общем, инфляционный механизм обладает чрезвычайно мощной и универсальной космологической креативностью - если угодно, предстает в качестве вселенского демиурга. Так что заглавие этой статьи - отнюдь не преувеличение.
В масштабах порядка сотых долей величины Вселенной (сейчас это сотни мегапарсек) ее состав был и остается однородным и изотропным. Однако на шкале всего космоса однородность исчезает. Инфляция прекращается в одной области и начинается в другой, и так до бесконечности. Это самовоспроизводящийся бесконечный процесс, порождающий ветвящееся множество миров - Мультивселенную. Одни и те же фундаментальные физические законы могут там реализоваться в различных ипостасях - к примеру, внутриядерные силы и заряд электрона в других вселенных могут оказаться отличными от наших. Эту фантастическую картину в настоящее время на полном серьезе обсуждают и физики, и космологи.

БОРЬБА ИДЕЙ


«Основные идеи инфляционного сценария были сформулированы три десятка лет назад, - объясняет один из авторов инфляционной космологии, профессор Стэнфордского университета Андрей Линде. - После этого главной задачей стала разработка реалистических теорий, основанных на этих идеях, но только критерии реалистичности не раз изменялись. В 1980-х доминировало мнение, что инфляцию удастся понять с помощью моделей Великого объединения. Потом надежды растаяли, и инфляцию стали интерпретировать в контексте теории супергравитации, а позднее - теории суперструн. Однако такой путь оказался очень нелегким. Во-первых, обе эти теории используют чрезвычайно сложную математику, а во-вторых, они так устроены, что реализовать с их помощью инфляционный сценарий весьма и весьма непросто. Поэтому прогресс здесь оказался довольно медленным. В 2000 году трое японских ученых с немалым трудом получили в рамках теории супергравитации модель хаотической инфляции, которую я придумал почти на 20 лет раньше. Спустя три года мы в Стэнфорде сделали работу, которая показала принципиальную возможность конструирования инфляционных моделей с помощью теории суперструн и объясняла на ее основе четырехмерность нашего мира. Конкретно, мы выяснили, что так можно получить вакуумное состояние с положительной космологической постоянной, которое необходимо для запуска инфляции. Наш подход с успехом развили другие ученые, и это весьма способствовало прогрессу космологии. Сейчас понятно, что теория суперструн допускает существование гигантского количества вакуумных состояний, дающих начало экспоненциальному расширению Вселенной.
Теперь следует сделать еще один шаг и понять устройство нашей Вселенной. Эти работы ведутся, но встречают огромные технические трудности, и что получится в результате, пока не ясно. Мои коллеги и я последние два года занимаемся семейством гибридных моделей, которые опираются и на суперструны, и на супергравитацию. Прогресс есть, мы уже способны описать многие реально существующие вещи. Например, мы близки к пониманию того, почему сейчас столь невелика плотность энергии вакуума, которая всего втрое превышает плотность частиц и излучения. Но необходимо двигаться дальше. Мы с нетерпением ожидаем результатов наблюдений космической обсерватории Planck, которая измеряет спектральные характеристики реликтового излучения с очень высоким разрешением. Не исключено, что показания ее приборов пустят под нож целые классы инфляционных моделей и дадут стимул к развитию альтернативных теорий».
Инфляционная космология может похвастаться немалым числом замечательных достижений. Она предсказала плоскую геометрию нашей Вселенной задолго до того, как этот факт подтвердили астрономы и астрофизики. Вплоть до конца 1990-х считалось, что при полном учете всего вещества Вселенной численная величина параметра Ω не превышает 1/3. Понадобилось открыть темную энергию, чтобы удостовериться, что эта величина практически равна единице, как и следует из инфляционного сценария. Были предсказаны колебания температуры реликтового излучения и заранее вычислен их спектр. Подобных примеров немало. Попытки опровергнуть инфляционную теорию предпринимались неоднократно, но это никому не удалось. Кроме того, как считает Андрей Линде, в последние годы сложилась концепция множественности вселенных, формирование которой вполне можно назвать научной революцией: «Несмотря на свою незавершенность, она становится частью культуры нового поколения физиков и космологов».

НАРАВНЕ С ЭВОЛЮЦИЕЙ

«Инфляционная парадигма реализована сейчас во множестве вариантов, среди которых нет признанного лидера, - говорит директор Института космологии при университете Тафтса Александр Виленкин. - Моделей много, но никто не знает, которая из них правильная. Поэтому говорить о каком-то драматическом прогрессе, достигнутом в последние годы, я бы не стал. Да и сложностей пока хватает. Например, не совсем понятно, как сравнивать вероятности событий, предсказанных той или иной моделью. В вечной вселенной любое событие должно происходить бесчисленное множество раз. Так что для вычисления вероятностей надо сравнивать бесконечности, а это очень непросто. Также существует нерешенная проблема начала инфляции. Скорее всего, без него не обойтись, но еще не понятно, как к нему подобраться. И все же у инфляционной картины мира нет серьезных конкурентов. Я бы сравнил ее с теорией Дарвина, которая поначалу тоже имела множество неувязок. Однако альтернативы у нее так и не появилось, и в конце концов она завоевала признание ученых. Мне кажется, что и концепция космологической инфляции прекрасно справится со всеми трудностями».

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png