Периодический закон Д.И. Менделеева и периодическая система химических элементов имеет большое значение в развитии химии. Окунемся в 1871 год, когда профессор химии Д.И. Менделеев, методом многочисленных проб и ошибок, пришел к выводу, что «… свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса». Периодичность изменения свойств элементов возникает вследствие периодического повторения электронной конфигурации внешнего электронного слоя с увеличением заряда ядра.


Современная формулировка периодического закона такова:

«свойства химических элементов (т.е. свойства и форма образуемых ими соединений) находятся в периодической зависимости от заряда ядра атомов химических элементов».

Преподавая химию, Менделеев понимал, что запоминание индивидуальных свойств каждого элемента, вызывает у студентов трудности. Он стал искать пути создания системного метода, чтобы облегчить запоминание свойств элементов. В результате появилась естественная таблица , позже она стала называться периодической .

Наша современная таблица очень похожа на менделеевскую. Рассмотрим ее подробнее.

Таблица Менделеева

Периодическая таблица Менделеева состоит из 8 групп и 7 периодов.

Вертикальные столбцы таблицы называют группами . Элементы, внутри каждой группы, обладают сходными химическими и физическими свойствами. Это объясняется тем, что элементы одной группы имеют сходные электронные конфигурации внешнего слоя, число электронов на котором равно номеру группы. При этом группа разделяется на главные и побочные подгруппы .

В Главные подгруппы входят элементы, у которых валентные электроны располагаются на внешних ns- и np- подуровнях. В Побочные подгруппы входят элементы, у которых валентные электроны располагаются на внешнем ns- подуровне и внутреннем (n — 1) d- подуровне (или (n — 2) f- подуровне).

Все элементы в периодической таблице , в зависимости от того, на каком подуровне (s-, p-, d- или f-) находятся валентные электроны классифицируются на: s- элементы (элементы главной подгруппы I и II групп), p- элементы (элементы главных подгрупп III — VII групп), d- элементы (элементы побочных подгрупп), f- элементы (лантаноиды, актиноиды).

Высшая валентность элемента (за исключением O, F, элементов подгруппы меди и восьмой группы) равна номеру группы, в которой он находится.

Для элементов главных и побочных подгрупп одинаковыми являются формулы высших оксидов (и их гидратов). В главных подгруппах состав водородных соединений являются одинаковыми, для элементов, находящихся в этой группе. Твердые гидриды образуют элементы главных подгрупп I — III групп, а IV — VII групп образуют а газообразные водородные соединения. Водородные соединения типа ЭН 4 – нейтральнее соединения, ЭН 3 – основания, Н 2 Э и НЭ — кислоты.

Горизонтальные ряды таблицы называют периодами . Элементы в периодах отличаются между собой, но общее у них то, что последние электроны находятся на одном энергетическом уровне (главное квантовое число n — одинаково).

Первый период отличается от других тем, что там находятся всего 2 элемента: водород H и гелий He.

Во втором периоде находятся 8 элементов (Li - Ne). Литий Li – щелочной металл начинает период, а замыкает его благородный газ неон Ne.

В третьем периоде, также как и во втором находятся 8 элементов (Na - Ar). Начинает период щелочной металл натрий Na, а замыкает его благородный газ аргон Ar.

В четвёртом периоде находятся 18 элементов (K - Kr) – Менделеев его обозначил как первый большой период. Начинается он также с щелочного металла Калий, а заканчивается инертным газом криптон Kr. В состав больших периодов входят переходные элементы (Sc - Zn) — d- элементы.

В пятом периоде, аналогично четвертому находятся 18 элементов (Rb - Xe) и структура его сходна с четвёртым. Начинается он также с щелочного металла рубидий Rb, а заканчивается инертным газом ксенон Xe. В состав больших периодов входят переходные элементы (Y - Cd) — d- элементы.

Шестой период состоит из 32 элементов (Cs - Rn). Кроме 10 d -элементов (La, Hf - Hg) в нем находится ряд из 14 f -элементов(лантаноиды)- Ce — Lu

Седьмой период не закончен. Он начинается с Франций Fr, можно предположить, что он будет содержать, также как и шестой период, 32 элемента, которые уже найдены (до элемента с Z = 118).

Интерактивная таблица Менделеева

Если посмотреть на периодическую таблицу Менделеева и провести воображаемую черту, начинающуюся у бора и заканчивающуюся между полонием и астатом, то все металлы будут находиться слева от черты, а неметаллы – справа. Элементы, непосредственно прилегающие к этой линии будут обладать свойствами как металлов, так и неметаллов. Их называют металлоидами или полуметаллами. Это бор, кремний, германий, мышьяк, сурьма, теллур и полоний.

Периодический закон

Менделеев дал следующую формулировку Периодического закона: «свойства простых тел, а также формы и свойства соединений элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».
Существует четыре основных периодических закономерности:

Правило октета утверждает, что все элементы стремятся приобрести или потерять электрон, чтобы иметь восьмиэлектронную конфигурацию ближайшего благородного газа. Т.к. внешние s- и p-орбитали благородных газов полностью заполнены, то они являются самыми стабильными элементами.
Энергия ионизации – это количество энергии, необходимое для отрыва электрона от атома. Согласно правилу октета, при движении по периодической таблице слева направо для отрыва электрона требуется больше энергии. Поэтому элементы с левой стороны таблицы стремятся потерять электрон, а с правой стороны – его приобрести. Самая высокая энергия ионизации у инертных газов. Энергия ионизации уменьшается при движении вниз по группе, т.к. у электронов низких энергетических уровней есть способность отталкивать электроны с более высоких энергетических уровней. Это явление названо эффектом экранирования . Благодаря этому эффекту внешние электроны мене прочно связаны с ядром. Двигаясь по периоду энергия ионизации плавно увеличивается слева направо.


Сродство к электрону – изменение энергии при приобретении дополнительного электрона атомом вещества в газообразном состоянии. При движении по группе вниз сродство к электрону становится менее отрицательным вследствие эффекта экранирования.


Электроотрицательность — мера того, насколько сильно стремится притягивать к себе электроны связанного с ним другого атома. Электроотрицательность увеличивается при движении в периодической таблице слева направо и снизу вверх. При этом надо помнить, что благородные газы не имеют электроотрицательности. Таким образом, самый электроотрицательный элемент – фтор.


На основании этих понятий, рассмотрим как меняются свойства атомов и их соединений в таблице Менделеева.

Итак, в периодической зависимости находятся такие свойства атома, которые связанны с его электронной конфигурацией: атомный радиус, энергия ионизации, электроотрицательность.

Рассмотрим изменение свойств атомов и их соединений в зависимости от положения в периодической системе химических элементов .

Неметалличность атома увеличивается при движении в периодической таблице слева направо и снизу вверх . В связи с этим основные свойства оксидов уменьшаются, а кислотные свойства увеличиваются в том же порядке — при движении слева направо и снизу вверх. При этом кислотные свойства оксидов тем сильнее, чем больше степень окисления образующего его элемента

По периоду слева направо основные свойства гидроксидов ослабевают,по главным подгруппам сверху вниз сила оснований увеличивается. При этом, если металл может образовать несколько гидроксидов, то с увеличением степени окисления металла, основные свойства гидроксидов ослабевают.

По периоду слева направо увеличивается сила кислородосодержащих кислот. При движении сверху вниз в пределах одной группы сила кислородосодержащих кислот уменьшается. При этом сила кислоты увеличивается с увеличением степени окисления образующего кислоту элемента.

По периоду слева направо увеличивается сила бескислородных кислот. При движении сверху вниз в пределах одной группы сила бескислородных кислот увеличивается.

Категории ,

Графическим изображением Периодического закона является Периодическая система (таблица). Горизонтальные ряды системы называют периодами, а вертикальные столбцы – группами.

Всего в системе (таблице) 7 периодов, причем номер периода равен числу электронных слоев в атоме элемента, номеру внешнего (валентного) энергетического уровня, значению главного квантового числа для высшего энергетического уровня. Каждый период (кроме первого) начинается s-элементом — активным щелочным металлом и заканчивается инертным газом, перед которым стоит p-элемент — активный неметалл (галоген). Если продвигаться по периоду слева направо, то с ростом заряда ядер атомов химических элементов малых периодов будет возрастать число электронов на внешнем энергетическом уровне, вследствие чего свойства элементов изменяются – от типично металлических (т.к. в начале периода стоит активный щелочной металл), через амфотерные (элемент проявляет свойства и металлов и неметаллов) до неметаллических (активный неметалл – галоген в конце периода), т.е. металлические свойства постепенно ослабевают и усиливаются неметаллические.

В больших периодах с ростом заряда ядер заполнение электронов происходит сложнее, что объясняет более сложное изменение свойств элементов по сравнению с элементами малых периодов. Так, в четных рядах больших периодов с ростом заряда ядра число электронов на внешнем энергетическом уровне остается постоянным и равным 2 или 1. Поэтому, пока идет заполнение электронами следующего за внешним (второго снаружи) уровня, свойства элементов в четных рядах изменяются медленно. При переходе к нечетным рядам, с ростом величины заряда ядра увеличивается число электронов на внешнем энергетическом уровне (от 1 до 8), свойства элементов изменяются также, как в малых периодах.

ОПРЕДЕЛЕНИЕ

Вертикальные столбцы в Периодической системе – группы элементов со сходным электронным строением и являющимися химическими аналогами. Группы обозначают римскими цифрами от I до VIII. Выделяют главные (А) и побочные (B) подгруппы, первые из которых содержат s- и p-элементы, вторые – d – элементы.

Номер А подгруппы показывает число электронов на внешнем энергетическом уровне (число валентных электронов). Для элементов В-подгрупп нет прямой связи между номером группы и числом электронов на внешнем энергетическом уровне. В А-подгруппах металлические свойства элементов усиливаются, а неметаллические – уменьшаются с возрастанием заряда ядра атома элемента.

Между положением элементов в Периодической системе и строением их атомов существует взаимосвязь:

— атомы всех элементов одного периода имеют равное число энергетических уровней, частично или полностью заполненных электронами;

— атомы всех элементов А подгрупп имею равное число электронов на внешнем энергетическом уровне.

План характеристики химического элемента на основании его положения в Периодической системе

Обычно характеристику химического элемента на основании его положения в Периодической системе дают по следующему плану:

— указывают символ химического элемента, а также его название;

— указывают порядковый номер, номер периода и группы (тип подгруппы), в которых находится элемент;

— указывают заряд ядра, массовое число, число электронов, протонов и нейтронов в атоме;

— записывают электронную конфигурацию и указывают валентные электроны;

— зарисовывают электронно-графические формулы для валентных электронов в основном и возбужденном (если оно возможно) состояниях;

— указывают семейство элемента, а также его тип (металл или неметалл);

— сравнивают свойства простого вещества со свойствами простых веществ, образованных соседними по подгруппе элементами;

— сравнивают свойств простого вещества со свойствами простых веществ, образованных соседними по периоду элементами;

— указывают формулы высших оксидов и гидроксидов с кратким описанием их свойств;

— указывают значения минимальной и максимальной степеней окисления химического элемента.

Характеристика химического элемента на примере магния (Mg)

Рассмотрим характеристику химического элемента на примере магния (Mg) согласно плану, описанному выше:

1. Mg – магний.

2. Порядковый номер – 12. Элемент находится в 3 периоде, в II группе, А (главной) подгруппе.

3. Z=12 (заряд ядра), M=24 (массовое число), e=12 (число электронов), p=12 (число протонов), n=24-12=12 (число нейтронов).

4. 12 Mg 1s 2 2s 2 2p 6 3s 2 – электронная конфигурация, валентные электроны 3s 2 .

5. Основное состояние

Возбужденное состояние

6. s-элемент, металл.

7. Высший оксид – MgO — проявляет основные свойства:

MgO + H 2 SO 4 = MgSO 4 + H 2 O

MgO + N 2 O 5 = Mg(NO 3) 2

В качестве гидроксида магнию соответствует основание Mg(OH) 2 , которое проявляет все типичные свойства оснований:

Mg(OH) 2 + H 2 SO 4 = MgSO 4 + 2H 2 O

8. Степень окисления «+2».

9. Металлические свойства у магния выражены сильнее, чем у бериллия, но слабее, чем у кальция.

10. Металлические свойства у магния выражены слабее, чем у натрия, но сильнее, чем у алюминия (соседние элементы 3-го периода).

Примеры решения задач

ПРИМЕР 1

Задание Охарактеризуйте химический элемент серу на основании её положения в Периодической системе Д.И. Менделеева
Решение 1. S – сера.

2. Порядковый номер – 16. Элемент находится в 3 периоде, в VI группе, А (главной) подгруппе.

3. Z=16 (заряд ядра), M=32 (массовое число), e=16 (число электронов), p=16 (число протонов), n=32-16=16 (число нейтронов).

4. 16 S 1s 2 2s 2 2p 6 3s 2 3p 4 – электронная конфигурация, валентные электроны 3s 2 3p 4 .

5. Основное состояние

Возбужденное состояние

6. p-элемент, неметалл.

7. Высший оксид – SO 3 — проявляет кислотные свойства:

SO 3 + Na 2 O = Na 2 SO 4

8. Гидроксид, соответствующий высшему оксиду – H 2 SO 4 , проявляет кислотные свойства:

H 2 SO 4 + 2NaOH = Na 2 SO 4 + 2H 2 O

9. Минимальная степень окисления «-2», максимальная – «+6»

10. Неметаллические свойства у серы выражены слабее, чем у кислорода, но сильнее, чем у селена.

11. Неметаллические свойства у серы выражены сильнее, чем у фосфора, но слабее, чем у хлора (соседние элементы в 3-м периоде).

ПРИМЕР 2

Задание Охарактеризуйте химический элемент натрий на основании её положения в Периодической системе Д.И. Менделеева
Решение 1. Na – натрий.

2. Порядковый номер – 11. Элемент находится в 3 периоде, в I группе, А (главной) подгруппе.

3. Z=11 (заряд ядра), M=23 (массовое число), e=11 (число электронов), p=11 (число протонов), n=23-11=12 (число нейтронов).

4. 11 Na 1s 2 2s 2 2p 6 3s 1 – электронная конфигурация, валентные электроны 3s 1 .

5. Основное состояние

6. s-элемент, металл.

7. Высший оксид – Na 2 O — проявляет основные свойства:

Na 2 O + SO 3 = Na 2 SO 4

В качестве гидроксида натрию соответствует основание NaOH, которое проявляет все типичные свойства оснований:

2NaOH + H 2 SO 4 = Na 2 SO 4 + 2H 2 O

8. Степень окисления «+1».

9. Металлические свойства у натрия выражены сильнее, чем у лития, но слабее, чем у калия.

10. Металлические свойства у натрия выражены сильнее, чем у магния (соседний элемент 3-го периода).

Гениального русского химика Д. И. Менделеева всю жизнь отличало стремление к познанию неведомого. Это стремление, а также глубочайшие и обширнейшие знания в сочетании с безошибочной научной интуицией и позволили Дмитрию Ивановичу разработать научную классификацию химических элементов - Периодическую систему в форме его знаменитой таблицы.

Периодическую систему химических элементов Д. И. Менделеева можно представить в виде большого дома, в котором «дружно живут» абсолютно все химические элементы, известные человеку. Чтобы уметь пользоваться Периодической системой, необходимо изучить химический алфавит, т. е. знаки химических элементов.

С их помощью вы научитесь писать слова - химические формулы, а на их основе сможете записывать предложения - уравнения химических реакций. Каждый химический элемент обозначают собственным химическим знаком, или символом, который наряду с названием химического элемента записан в таблице Д. И. Менделеева. качестве символов по предложению шведского химика Й. Берцелиуса были приняты в большинстве случаев начальные буквы латинских названий химических элементов. Так, водород (латинское название Hydrogenium - гидрогениум) обозначают буквой Н (читают «аш»), кислород (латинское название Oxygenium - оксигениум) - буквой О (читают «о»), углерод (латинское название Сarboneum - карбонеум) - буквой С (читают «цэ»).

На букву С начинаются латинские названия ещё нескольких химических элементов: кальция (

Calcium), меди (Cuprum), кобальта (Cobaltum) и др. Чтобы их различить, И. Берцелиус предложил к начальной букве латинского названия добавлять ещё одну из последующих букв названия. Так, химический знак кальция записывают символом Са (читают «кальций»), меди - Сu (читают «купрум»), кобальта - Со (читают «кобальт»).

В названиях одних химических элементов отражены важнейшие свойства элементов, например, водород - рождающий воду, кислород - рождающий кислоты, фосфор - несущий свет (рис. 20) и т. д.

Рис. 20.
Этимология названия элемента № 15 Периодической системы Д. И. Менделеева

Другие элементы названы в честь небесных тел или планет Солнечной системы - селен и теллур (рис. 21) (от греч. Селена - Луна и Теллурис - Земля), уран, нептуний, плутоний.

Рис. 21.
Этимология названия элемента № 52 Периодической системы Д. И. Менделеева

Отдельные названия заимствованы из мифологии (рис. 22). Например, тантал. Так звали любимого сына Зевса. За преступления перед богами Тантал был сурово наказан. Он стоял по горло в воде, и над ним свисали ветви с сочными, ароматными плодами. Однако едва он хотел напиться, как вода утекала от него, едва желал утолить голод и протягивал руку к плодам - ветви отклонялись в сторону. Пытаясь выделить тантал из руд, химики испытали не меньше мучений.

Рис. 22.
Этимология названия элемента № 61 Периодической системы Д. И. Менделеева

Некоторые элементы были названы в честь различных государств или частей света. Например, германий, галлий (Галлия - старинное название Франции), полоний (в честь Польши), скандий (в честь Скандинавии), франций, рутений (Рутения - латинское название России), европий и америций. Вот элементы, названные в честь городов: гафний (в честь Копенгагена), лютеций (в старину Париж называли Лютеций), берклий (в честь города Беркли в США), иттрий, тербий, эрбий, иттербий (названия этих элементов происходят от Иттерби - маленького города в Швеции, где впервые был обнаружен минерал, содержащий эти элементы), дубний (рис. 23).

Рис. 23.
Этимология названия элемента № 105 Периодической системы Д. И. Менделеева

Наконец, в названиях элементов увековечены имена великих учёных: кюрий, фермий, эйнштейний, менделевий (рис. 24), лоуренсий.

Рис. 24.
Этимология названия элемента № 101 Периодической системы Д. И. Менделеева

Каждому химическому элементу отведена в таблице Менделеева, в общем «доме» всех элементов, своя «квартира» - клетка со строго определённым номером. Глубокий смысл этого номера вам раскроется при дальнейшем изучении химии. Так же строго распределена и этажность этих «квартир» - периоды, в которых «живут» элементы. Как и порядковый номер элемента (номер «квартиры»), номер периода («этажа») таит в себе важнейшую информацию о строении атомов химических элементов. По горизонтали - «этажности» - Периодическая система делится на семь периодов:

  • 1-й период включает в себя два элемента: водород Н и гелий Не;
  • 2-й период начинается литием Li и оканчивается неоном Ne (8 элементов);
  • 3-й период начинается натрием Na и оканчивается аргоном Аг (8 элементов).

Три первых периода, состоящие каждый из одного ряда, называют малыми периодами.

Периоды 4, 5 и 6-й включают по два ряда элементов, их называют большими периодами; 4-й и 5-й периоды содержат по 18 элементов, 6-й - 32 элемента.

7-й период - незаконченный, состоит пока только из одного ряда.

Обратите внимание на «подвальные этажи» Периодической системы - там «живут» по 14 элементов-близнецов, похожие по своим свойствам одни на лантан La, другие на актиний Ас, которые представляют их на верхних «этажах» таблицы: в 6-м и 7-м периодах.

По вертикали химические элементы, «живущие» в сходных по свойствам «квартирах», располагаются друг под другом в вертикальных столбцах - группах, которых в таблице Д. И. Менделеева восемь.

Каждая группа состоит из двух подгрупп - главной и побочной. Подгруппу, в которую входят элементы и малых, и больших периодов, называют главной подгруппой или группой А. Подгруппу, в которую входят элементы только больших периодов, называют побочной подгруппой или группой В. Так, в главную подгруппу I группы (IA группы) входят литий, натрий, калий, рубидий и франций - это подгруппа лития Li; побочная подгруппа этой группы (IB группы) образована медью, серебром и золотом - это подгруппа меди Си.

Кроме формы таблицы Д. И. Менделеева, которая называется короткопериодной (она приведена на форзаце учебника), существует множество других форм, например длиннопериодный вариант.

Подобно тому как из элементов игры «Лего» ребёнок может сконструировать огромное количество различных предметов (см. рис. 10), так и из химических элементов природа и человек создали окружающее нас многообразие веществ. Ещё нагляднее другая модель: подобно тому как 33 буквы русского алфавита образуют различные комбинации, десятки тысяч слов, так и 114 химических элементов в различных сочетаниях создают более 20 миллионов различных веществ.

Постарайтесь усвоить закономерности образования слов - химических формул, и тогда мир веществ откроется перед вами во всём своём красочном многообразии.

Но для этого вначале выучите буквы - символы химических элементов (табл. 1).

Таблица 1
Названия некоторых химических элементов

Ключевые слова и словосочетания

  1. Периодическая система химических элементов (таблица) Д. И. Менделеева.
  2. Периоды большие и малые.
  3. Группы и подгруппы - главная (А группа) и побочная (В группа).
  4. Символы химических элементов.

Работа с компьютером

  1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
  2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока - сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

Вопросы и задания

  1. Пользуясь словарями (этимологическим, энциклопедическим и химических терминов), назовите важнейшие свойства, которые отражены в названиях химических элементов: бром Вr, азот N, фтор F.
  2. Объясните, как в названии химических элементов титана и ванадия отражено влияние древнегреческих мифов.
  3. Почему латинское название золота Aurum (аурум), а серебра - Argentum (аргентум)?
  4. Расскажите историю открытия какого-либо (по вашему выбору) химического элемента и объясните этимологию его названия.
  5. Запишите «координаты», т. е. положение в Периодической системе Д. И. Менделеева (номер элемента, номер периода и его вид - большой или малый, номер группы и подгруппа - главная или побочная), для следующих химических элементов: кальций, цинк, сурьма, тантал, европий.
  6. Распределите химические элементы, перечисленные в таблице 1, на три группы по признаку «произношение химического символа». Может ли выполнение этого задания помочь вам в запоминании химических символов и произношении символов элементов?

Любой, кто ходил в школу, помнит, что одним из обязательных для изучения предметов была химия. Она могла нравиться, а могла и не нравиться – это не важно. И вполне вероятно, что многие знания по этой дисциплине уже забыты и в жизни не применяются. Однако таблицу химических элементов Д. И. Менделеева наверняка помнит каждый. Для многих она так и осталась разноцветной таблицей, где в каждый квадратик вписаны определённые буквы, обозначающие названия химических элементов. Но здесь мы не будем говорить о химии как таковой, и описывать сотни химических реакций и процессов, а расскажем о том, как вообще появилась таблица Менделеева – эта история будет интересна любому человеку, да и вообще всем тем, кто охоч до интересной и полезной информации.

Небольшая предыстория

В далёком 1668 году выдающимся ирландским химиком, физиком и богословом Робертом Бойлем была опубликована книга, в которой было развенчано немало мифов об алхимии, и в которой он рассуждал о необходимости поиска неразложимых химических элементов. Учёный также привёл их список, состоящий всего из 15 элементов, но допускал мысль о том, что могут быть ещё элементы. Это стало отправной точкой не только в поиске новых элементов, но и в их систематизации.

Сто лет спустя французским химиком Антуаном Лавуазье был составлен новый перечень, в который входили уже 35 элементов. 23 из них позже были признаны неразложимыми. Но поиск новых элементов продолжался учёными по всему миру. И главную роль в этом процессе сыграл знаменитый русский химик Дмитрий Иванович Менделеев – он впервые выдвинул гипотезу о том, что между атомной массой элементов и их расположением в системе может быть взаимосвязь.

Благодаря кропотливому труду и сопоставлению химических элементов Менделеев смог обнаружить связь между элементами, в которой они могут быть одним целым, а их свойства являются не чем-то само собой разумеющимся, а представляют собой периодически повторяющееся явление. В итоге, в феврале 1869 года Менделеев сформулировал первый периодический закон, а уже в марте его доклад «Соотношение свойств с атомным весом элементов» был представлен на рассмотрение Русского химического общества историком химии Н. А. Меншуткиным. Затем в том же году публикация Менделеева была напечатана в журнале «Zeitschrift fur Chemie» в Германии, а в 1871 году новую обширную публикацию учёного, посвящённую его открытию, опубликовал другой немецкий журнал «Annalen der Chemie».

Создание периодической таблицы

Основная идея к 1869 году уже была сформирована Менделеевым, причём за довольно короткое время, но оформить её в какую-либо упорядоченную систему, наглядно отображающую, что к чему, он долго не мог. В одном из разговоров со своим соратником А. А. Иностранцевым он даже сказал, что в голове у него уже всё сложилось, но вот привести всё к таблице он не может. После этого, согласно данным биографов Менделеева, он приступил к кропотливой работе над своей таблицей, которая продолжалась трое суток без перерывов на сон. Перебирались всевозможные способы организации элементов в таблицу, а работа была осложнена ещё и тем, что в тот период наука знала ещё не обо всех химических элементах. Но, несмотря на это, таблица всё же была создана, а элементы систематизированы.

Легенда о сне Менделеева

Многие слышали историю, что Д. И. Менделееву его таблица приснилась. Эта версия активно распространялась вышеупомянутым соратником Менделеева А. А. Иностранцевым в качестве забавной истории, которой он развлекал своих студентов. Он говорил, что Дмитрий Иванович лёг спать и во сне отчётливо увидел свою таблицу, в которой все химические элементы были расставлены в нужном порядке. После этого студенты даже шутили, что таким же способом была открыта 40° водка. Но реальные предпосылки для истории со сном всё же были: как уже упоминалось, Менделеев работал над таблицей без сна и отдыха, и Иностранцев однажды застал его уставшим и вымотанным. Днём Менделеев решил немного передохнуть, а некоторое время спустя, резко проснулся, сразу же взял листок бумаги и изобразил на нём уже готовую таблицу. Но сам учёный опровергал всю эту историю со сном, говоря: «Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг… готово». Так что легенда о сне может быть и очень привлекательна, но создание таблицы стало возможным только благодаря упорному труду.

Дальнейшая работа

В период с 1869 по 1871 годы Менделеев развивал идеи периодичности, к которым склонялось научное сообщество. И одним из важных этапов данного процесса стало понимание того, что любой элемент в системе должно располагать, исходя из совокупности его свойств в сравнении со свойствами остальных элементов. Основываясь на этом, а также опираясь на результаты исследований в изменении стеклообразующих оксидов, химику удалось внести поправки в значения атомных масс некоторых элементов, среди которых были уран, индий, бериллий и другие.

Пустые клетки, остававшиеся в таблице, Менделеев, конечно же, хотел скорее заполнить, и в 1870 году предсказал, что в скором времени будут открыты неизвестные науке химические элементы, атомные массы и свойства которых он сумел вычислить. Первыми из них стали галлий (открыт в 1875 году), скандий (открыт в 1879 году) и германий (открыт в 1885 году). Затем прогнозы продолжили реализовываться, и были открыты ещё восемь новых элементов, среди которых: полоний (1898 год), рений (1925 год), технеций (1937 год), франций (1939 год) и астат (1942-1943 годы). Кстати, в 1900 году Д. И. Менделеев и шотландский химик Уильям Рамзай пришли к мнению, что в таблицу должны быть включены и элементы нулевой группы – до 1962 года они назывались инертными, а после – благородными газами.

Организация периодической системы

Химические элементы в таблице Д. И. Менделеева расположены по рядам, в соответствии с возрастанием их массы, а длина рядов подобрана так, чтобы находящиеся в них элементы имели схожие свойства. Например, благородные газы, такие как радон, ксенон, криптон, аргон, неон и гелий с трудом вступают в реакции с другими элементами, а также имеют низкую химическую активность, из-за чего расположены в крайнем правом столбце. А элементы левого столбца (калий, натрий, литий и т.д.) отлично реагируют с прочими элементами, а сами реакции носят взрывной характер. Говоря проще, внутри каждого столбца элементы имеют подобные свойства, варьирующиеся при переходе от одного столбца к другому. Все элементы, вплоть до №92 встречаются в природе, а с №93 начинаются искусственные элементы, которые могут быть созданы лишь в лабораторных условиях.

В своём первоначальном варианте периодическая система понималась только как отражение существующего в природе порядка, и никаких объяснений, почему всё должно обстоять именно так, не было. И лишь когда появилась квантовая механика, истинный смысл порядка элементов в таблице стал понятен.

Уроки творческого процесса

Говоря о том, какие уроки творческого процесса можно извлечь из всей истории создания периодической таблицы Д. И. Менделеева, можно привести в пример идеи английского исследователя в области творческого мышления Грэма Уоллеса и французского учёного Анри Пуанкаре. Приведём их вкратце.

Согласно исследованиям Пуанкаре (1908 год) и Грэма Уоллеса (1926 год), существует четыре основных стадии творческого мышления:

  • Подготовка – этап формулирования основной задачи и первые попытки её решения;
  • Инкубация – этап, во время которого происходит временное отвлечение от процесса, но работа над поиском решения задачи ведётся на подсознательном уровне;
  • Озарение – этап, на котором находится интуитивное решение. Причём, найтись это решение может в абсолютно не имеющей к задаче ситуации;
  • Проверка – этап испытаний и реализации решения, на котором происходит проверка этого решения и его возможное дальнейшее развитие.

Как мы видим, в процессе создания своей таблицы Менделеев интуитивно следовал именно этим четырём этапам. Насколько это эффективно, можно судить по результатам, т.е. по тому, что таблица была создана. А учитывая, что её создание стало огромным шагом вперёд не только для химической науки, но и для всего человечества, приведённые выше четыре этапа могут быть применимы как к реализации небольших проектов, так и к осуществлению глобальных замыслов. Главное помнить, что ни одно открытие, ни одно решение задачи не могут быть найдены сами по себе, как бы ни хотели мы увидеть их во сне и сколько бы ни спали. Чтобы что-то получилось, не важно, создание это таблицы химических элементов или разработка нового маркетинг-плана, нужно обладать определёнными знаниями и навыками, а также умело использовать свои потенциал и упорно работать.

Мы желаем вам успехов в ваших начинаниях и успешной реализации задуманного!

Свойства химических элементов позволяют объединять их в соответствующие группы. На этом принципе была создана периодическая система, изменившая представление о существующих веществах и позволившая предположить существование новых, ранее неизвестных элементов.

Вконтакте

Периодическая система Менделеева

Периодическая таблица химических элементов была составлена Д. И. Менделеевым во второй половине XIX века. Что такое это, и для чего она нужна? Она объединяет все химические элементы по возрастанию атомного веса, причем, все они расставлены так, что их свойства изменяются периодическим образом.

Периодическая система Менделеева в свела в единую систему все существующие элементы, прежде считавшиеся просто отдельными веществами.

На основании ее изучения были предсказаны, а впоследствии - синтезированы новые химические вещества. Значение этого открытия для науки невозможно переоценить , оно значительно опередило свое время и дало толчок к развитию химии на многие десятилетия.

Существует три наиболее распространенных варианта таблицы, которые условно именуются «короткая», «длинная» и «сверхдлинная». Основной считается длинная таблица, она утверждена официально. Отличием между ними является компоновка элементов и длина периодов.

Что такое период

Система содержит 7 периодов . Они представлены графически в виде горизонтальных строк. При этом, период может иметь одну или две строки, называемые рядами. Каждый последующий элемент отличается от предыдущего возрастанием заряда ядра (количества электронов) на единицу.

Если не усложнять, период - это горизонтальная строка периодической таблицы. Каждый из них начинается металлом и заканчивается инертным газом. Собственно, это и создает периодичность - свойства элементов изменяются внутри одного периода, вновь повторяясь в следующем. Первый, второй и третий периоды - неполные, они называются малыми и содержат соответственно 2, 8 и 8 элементов. Остальные - полные, они имеют по 18 элементов.

Что такое группа

Группа - это вертикальный столбец , содержащий элементы с одинаковым электронным строением или, говоря проще, с одинаковой высшей . Официально утвержденная длинная таблица содержит 18 групп, которые начинаются со щелочных металлов и заканчиваются инертными газами.

Каждая группа имеет свое название, облегчающее поиск или классификацию элементов. Усиливаются металлические свойства в независимости от элемента по направлению сверху-вниз. Это связано с увеличением количества атомных орбит — чем их больше, тем слабее электронные связи, что делает более ярко выраженной кристаллическую решетку.

Металлы в периодической таблице

Металлы в таблице Менделеева имеют преобладающее количество, список их достаточно обширен. Они характеризуются общими признаками, по свойствам они неоднородны и делятся на группы. Некоторые из них имеют мало общего с металлами в физическом смысле, а иные могут существовать только доли секунды и в природе абсолютно не встречаются (по крайней мере, на планете ), поскольку созданы, точнее, вычислены и подтверждены в лабораторных условиях, искусственно. Каждая группа имеет собственные признаки , название и довольно заметно отличается от других. Особенно это различие выражено у первой группы.

Положение металлов

Какого положение металлов в периодической системе? Элементы расположены по увеличению атомной массы или количества электронов и протонов. Их свойства изменяются периодически, поэтому аккуратного размещения по принципу «один к одному» в таблице нет. Как определить металлы, и возможно ли это сделать по таблице Менделеева? Для того, чтобы упростить вопрос, придуман специальный прием: условно по местам соединения элементов проводится диагональная линия от Бора до Полония (или до Астата). Те, что оказываются слева - металлы, справа - неметаллы. Это было бы очень просто и здорово, но есть исключения - Германий и Сурьма.

Такая «методика» - своего рода шпаргалка, она придумана лишь для упрощения процесса запоминания. Для более точного представления следует запомнить, что список неметаллов составляет всего 22 элемента, поэтому отвечая на вопрос, сколько всего металлов всего содержится в таблице Менделеева

На рисунке можно наглядно увидеть, какие элементы являются неметаллами и как они располагаются в таблице по группам и периодам.

Общие физические свойства

Существуют общие физические свойства металлов. К ним относятся:

  • Пластичность.
  • Характерный блеск.
  • Электропроводность.
  • Высокая теплопроводность.
  • Все, кроме ртути, находятся в твердом состоянии.

Следует понимать, что свойства металлов очень различаются относительно их химической или физической сути. Некоторые из них мало похожи на металлы в обыденном понимании этого термина. Например, ртуть занимает особенное положение. Она при обычных условиях находится в жидком состоянии, не имеет кристаллической решетки, наличию которой обязаны своими свойствами другие металлы. Свойства последних в этом случае условны, с ними ртуть роднят в большей степени химические характеристики.

Интересно! Элементы первой группы, щелочные металлы, в чистом виде не встречаются, находясь в составе различных соединений.

Самый мягкий металл, существующий в природе - цезий - относится к этой группе. Он, как и другие щелочные подобные вещества, мало общего имеет с более типичными металлами. Некоторые источники утверждают, что на самом деле, самый мягкий металл калий, что сложно оспорить или подтвердить, поскольку ни тот, ни другой элемент не существует сам по себе — будучи выделенным в результате химической реакци они быстро окисляются или вступают в реакцию.

Вторая группа металлов - щелочноземельные - намного ближе к основным группам. Название «щелочноземельные» происходит из древних времен, когда окислы назывались «землями», поскольку они имеют рыхлую рассыпчатую структуру. Более-менее привычными (в обиходном смысле) свойствами обладают металлы начиная с 3 группы. С увеличением номера группы количество металлов убывает

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png