АТМОСФЕРА Земли (греческий atmos пар + sphaira шар) - газовая оболочка, окружающая Землю. Масса атмосферы составляет около 5,15·10 15 Биологическое значение атмосферы огромно. В атмосфере осуществляется массо-энергообмен между живой и неживой природой, между растительным и животным миром. Азот атмосферы усваивают микроорганизмы; из углекислого газа и воды за счет энергии Солнца растения синтезируют органические вещества и выделяют кислород. Наличие атмосферы обеспечивает сохранение на Земле воды, также являющейся важным условием существования живых организмов.

Исследования, проведенные с помощью высотных геофизических ракет, искусственных спутников Земли и межпланетных автоматических станций, установили, что земная атмосфера простирается на тысячи километров. Границы атмосферы непостоянны, на них влияют гравитационное поле Луны и давление потока солнечных лучей. Над экватором в области земной тени атмосфера достигает высот около 10 000км, а над полюсами границы ее удалены от поверхности земли на 3000 км. Основная масса атмосферы (80-90%) находится в пределах высот до 12-16 км, что объясняется экспоненциальным (нелинейным) характером уменьшения плотности (разрежением) ее газовой среды по мере увеличения высоты над уровнем моря.

Существование большинства живых организмов в естественных условиях возможно в еще более узких границах атмосферы, до 7-8 км, где имеет место необходимое для активного протекания биологических процессов сочетание таких атмосферных факторов, как газовый состав, температура, давление, влажность. Гигиеническое значение имеют также движение и ионизация воздуха, атмосферные осадки, электрическое состояние атмосферы.

Газовый состав

Атмосфера представляет собой физическую смесь газов (табл. 1), преимущественно азота и кислорода (78,08 и 20,95 об. %). Соотношение газов атмосферы практически одинаково до высот 80-100 км. Постоянство основной части газового состава атмосеры обусловливается относительным уравновешиванием процессов газообмена между живой и неживой природой и непрерывным перемешиванием масс воздуха в горизонтальном и вертикальном направлениях.

Таблица 1. ХАРАКТЕРИСТИКА ХИМИЧЕСКОГО СОСТАВА СУХОГО АТМОСФЕРНОГО ВОЗДУХА У ЗЕМНОЙ ПОВЕРХНОСТИ

Состав газовый

Объемная концентрация, %

Кислород

Углекислый газ

Закись азота

Двуокись серы

От 0 до 0,0001

От 0 до 0,000007 летом, от 0 до 0,000002 зимой

Двуокись азота

От 0 до 0,000002

Окись углерода

На высотах более 100 км происходит изменение процентного содержания отдельных газов, связанное с их диффузным расслоением под влиянием гравитации и температуры. Кроме того, под действием коротковолновой части ультрафиолетовых и рентгеновских лучей на высоте 100 км и более происходит диссоциация молекул кислорода, азота и углекислого газа на атомы. На больших высотах эти газы находятся в виде сильно ионизированных атомов.

Содержание углекислого газа в атмосфере различных районов Земли менее постоянно, что связано отчасти с неравномерным рассредоточением крупных промышленных предприятий, загрязняющих воздух, а также неравномерностью распределения на Земле растительности, водных бассейнов, поглощающих углекислый газ. Также изменчиво в атмосфере и содержание аэрозолей (см.) - взвешенных в воздухе частиц размером от нескольких миллимикрон до нескольких десятков микрон, - образующихся в результате вулканических извержений, мощных искусственных взрывов, загрязнений индустриальными предприятиями. Концентрация аэрозолей быстро убывает с высотой.

Самая непостоянная и важная из переменных компонентов атмосферы - водяной пар, концентрация которого у земной поверхности может колебаться от 3% (в тропиках) до 2×10 -10 % (в Антарктиде). Чем выше температура воздуха, тем больше влаги при прочих равных условиях может находиться в атмосфере и наоборот. Основная масса паров воды сосредоточена в атмосфере до высот 8-10 км. Содержание водяного пара в атмосфере зависит от сочетанного влияния процессов испарения, конденсации и горизонтального переноса. На больших высотах в связи с понижением температуры и конденсации паров воздух практически сухой.

Атмосфера Земли, помимо молекулярного и атомарного кислорода, содержит в незначительном количестве и озон (см.), концентрация которого весьма непостоянна и меняется в зависимости от высоты и времени года. Больше всего озона содержится в области полюсов к концу полярной ночи на высоте 15-30 км с резким убыванием вверх и вниз. Озон возникает в результате фотохимического действия на кислород ультрафиолетовой солнечной радиации преимущественно на высотах 20-50 км. Двухатомные молекулы кислорода частично распадаются при этом на атомы и, присоединяясь к неразложенным молекулам, образуют трехатомные молекулы озона (полимерная, аллотропная форма кислорода).

Наличие в атмосфере группы так называемых инертных газов (гелия, неона, аргона, криптона, ксенона) связано с непрерывным протеканием процессов естественного радиоактивного распада.

Биологическое значение газов атмосферы очень велико. Для большинства многоклеточных организмов определенное содержание молекулярного кислорода в газовой или водной среде является непременным фактором их существования, обусловливающим при дыхании высвобождение энергии из органических веществ, созданных первоначально в ходе фотосинтеза. Не случайно, что верхние границы биосферы (часть поверхности земного шара и нижняя часть атмосферы, где существует жизнь) определяются наличием достаточного количества кислорода. В процессе эволюции организмы приспособились к определенному уровню содержания кислорода в атмосфере; изменение содержания кислорода в сторону уменьшения или увеличения оказывает неблагоприятный эффект (см. Высотная болезнь , Гипероксия , Гипоксия).

Выраженным биологическим действием обладает и озон-аллотропная форма кислорода. При концентрациях, не превышающих 0,0001 мг/л, что характерно для курортных местностей и морских побережий, озон оказывает целебное действие - стимулирует дыхание и сердечно-сосудистую деятельность, улучшает сон. С увеличением концентрации озона проявляется его токсическое действие: раздражение глаз, некротическое воспаление слизистых оболочек дыхательных путей, обострение легочных заболеваний, вегетативные неврозы. Вступая в соединение с гемоглобином, озон образует метгемоглобин, что приводит к нарушению дыхательной функции крови; затрудняется перенос кислорода из легких к тканям, развиваются явления удушья. Сходное неблагоприятное влияние на организм оказывает и атомарный кислород. Озон играет значительную роль в создании термических режимов различных слоев атмосферы вследствие чрезвычайно сильного поглощения солнечной радиации и земного излучения. Наиболее интенсивно озон поглощает ультрафиолетовые и инфракрасные лучи. Солнечные лучи с длиной волны меньше 300 нм почти полностью поглощаются атмосферным озоном. Таким образом, Земля окружена своеобразным «озоновым экраном», защищающим многие организмы от губительного действия ультрафиолетового излучения Солнца, Азот атмосферного воздуха имеет важное биологическое значение прежде всего как источник так наз. фиксированного азота - ресурса растительной (а в конечном счете и животной) пищи. Физиологическая значимость азота определяется его участием в создании необходимого для жизненных процессов уровня атмосферного давления. При определенных условиях изменения давления азот играет основную роль в развитии ряда нарушений в организме (см. Декомпрессионная болезнь). Предположения о том, что азот ослабляет токсическое действие на организм кислорода и усваивается из атмосферы не только микроорганизмами, но и высшими животными, являются спорными.

Инертные газы атмосферы (ксенон, криптон, аргон, неон, гелий) при создаваемом ими в обычных условиях парциальном давлении могут быть отнесены к числу биологически индифферентных газов. При значительном повышении парциального давления эти газы оказывают наркотическое действие.

Наличие углекислого газа в атмосфере обеспечивает накопление солнечной энергии в биосфере за счет фотосинтеза сложных соединений углерода, которые в процессе жизни непрерывно возникают, изменяются и разлагаются. Эта динамическая система поддерживается в результате деятельности водорослей и наземных растений, улавливающих энергию солнечного света и использующих ее для превращения углекислого газа (см.) и воды в разнообразные органические соединения с выделением кислорода. Протяженность биосферы вверх ограничена частично и тем, что на высотах более 6-7 км хлорофиллсодержащие растения не могут жить из-за низкого парциального давления углекислого газа. Углекислый газ является весьма активным и в физиологическом отношении, так как играет важную роль в регуляции обменных процессов, деятельности центральной нервной системы, дыхания, кровообращения, кислородного режима организма. Однако эта регуляция опосредована влиянием углекислого газа, образуемого самим организмом, а не поступающего из атмосферы. В тканях и крови животных и человека парциальное давление углекислого газа примерно в 200 раз превышает величину его давления в атмосфере. И лишь при значительном увеличении содержания углекислого газа в атмосфере (более 0,6-1%) наблюдаются нарушения в организме, обозначаемые термином гиперкапния (см.). Полное устранение углекислого газа из вдыхаемого воздуха не может непосредственно оказать неблагоприятного влияния на организм человека и животных.

Углекислый газ играет определенную роль в поглощении длинноволнового излучения и поддержании «оранжерейного эффекта», повышающего температуру у поверхности Земли. Изучается также проблема влияния на термические и другие режимы атмосферы углекислого газа, поступающего в громадных количествах в воздух как отход промышленности.

Водяные пары атмосферы (влажность воздуха) также оказывают влияние на организм человека, в частности на теплообмен с окружающей средой.

В результате конденсации водяного пара в атмосфере образуются облака и выпадают атмосферные осадки (дождь, град, снег). Водяные пары, рассеивая солнечное излучение, участвуют в создании теплового режима Земли и нижних слоев атмосферы, в формировании метеорологических условий.

Атмосферное давление

Атмосферное давление (барометрическое) - давление, оказываемое атмосферой под влиянием гравитации на поверхность Земли. Величина этого давления в каждой точке атмосферы равна весу вышележащего столба воздуха с единичным основанием, простирающегося над местом измерения до границ атмосферы. Измеряют атмосферное давление барометром (см.) и выражают в миллибарах, в ньютонах на квадратный метр или высотой столба ртути в барометре в миллиметрах, приведенной к 0° и нормальной величине ускорения силы тяжести. В табл. 2 приведены наиболее употребительные единицы измерения атмосферного давления.

Изменение давления происходит вследствие неравномерного нагревания масс воздуха, расположенных над сушей и водой в различных географических широтах. При повышении температуры плотность воздуха и создаваемое им давление уменьшаются. Огромное скопление быстродвижущегося воздуха с пониженным давлением (с уменьшением давления от периферии к центру вихря) называют циклоном, с повышенным давлением (с повышением давления к центру вихря) - антициклоном. Для прогноза погоды важны непериодические изменения атмосферного давления, происходящие в движущихся обширных массах и связанные с возникновением, развитием и разрушением антициклонов и циклонов. Особенно большие изменения атмосферного давления связаны с быстрым перемещением тропических циклонов. При этом атмосферное давление может изменяться на 30-40 мбар за сутки.

Падение атмосферного давления в миллибарах на расстоянии, равном 100 км, называется горизонтальным барометрическим градиентом. Обычно величины горизонтального барометрического градиента составляют 1-3 мбар, но в тропических циклонах иногда возрастают до десятков миллибар на 100 км.

С подъемом на высоту атмосферное давление понижается в логарифмической зависимости: вначале очень резко, а затем все менее заметно (рис. 1). Поэтому кривая изменения барометрического давления носит экспоненциальный характер.

Убывание давления на единицу расстояния по вертикали называется вертикальным барометрическим градиентом. Часто пользуются обратной ему величиной - барометрической ступенью.

Так как барометрическое давление есть сумма парциальных давлений газов, образующих воздух, то очевидно, что с подъемом на высоту наряду с уменьшением общего давления атмосферы снижается и парциальное давление газов, составляющих воздух. Величина парциального давления любого газа в атмосфере вычисляется по формуле

где Р х - парциальное давление газа, Ρ z - атмосферное давление на высоте Ζ, Х% - процентное содержание газа, парциальное давление которого следует определить.

Рис. 1. Изменение барометрического давления в зависимости от высоты над уровнем моря.

Рис. 2. Изменение парциального давления кислорода в альвеолярном воздухе и насыщения артериальной крови кислородом в зависимости от изменения высоты при дыхании воздухом и кислородом. Дыхание кислородом начинается с высоты 8,5 км (эксперимент в барокамере).

Рис. 3. Сравнительные кривые средних величин активного сознания у человека в минутах на разных высотах после быстрого подъема при дыхании воздухом (I) я кислородом (II). На высотах более 15 км активное сознание нарушается одинаково при дыхании кислородом и воздухом. На высотах до 15 км дыхание кислородом значительно продлевает период активного сознания (эксперимент в барокамере).

Поскольку процентный состав газов атмосферы относительно постоянен, то для определения парциального давления любого газа требуется лишь знать общее барометрическое давление на данной высоте (рис. 1 и табл. 3).

Таблица 3. ТАБЛИЦА СТАНДАРТНОЙ АТМОСФЕРЫ (ГОСТ 4401-64) 1

Геометрическая высота (м)

Температура

Барометрическое давление

Парциальное давление кислорода (мм рт. ст.)

мм рт. ст.

1 Дана в сокращенном виде и дополнена графой «Парциальное давление кислорода» .

При определении парциального давления газа во влажном воздухе нужно вычесть из величины барометрического давления давление (упругость) насыщенных паров.

Формула для определения парциального давления газа во влажном воздухе будет несколько иной, чем для сухого воздуха:

где рH 2 O - упругость водяных паров. При t° 37° упругость насыщенного водяного пара равна 47 мм рт. ст. Эта величина используется при вычислении парциальных давлений газов альвеолярного воздуха в наземных и высотных условиях.

Влияние на организм повышенного и пониженного давления. Изменения барометрического давления в сторону повышения или понижения оказывают разнообразное действие на организм животных и человека. Влияние повышенного давления связано с механическим и проникающим физико-химическим действием газовой среды (так наз. компрессионный и проникающий эффекты).

Компрессионный эффект проявляется: общим объемным сжатием, обусловленным равномерным повышением сил механического давления на органы и ткани; механонаркозом, обусловленным равномерной объемной компрессией при очень высоком барометрическом давлении; местным неравномерным давлением на ткани, которые ограничивают газосодержащие полости при нарушенной связи наружного воздуха с воздухом, находящимся в полости, например, среднего уха, придаточных полостях носа (см. Баротравма); увеличением плотности газа в системе внешнего дыхания, что вызывает возрастание сопротивления дыхательным движениям, особенно при форсированном дыхании (физическая нагрузка, гиперкапния).

Проникающий эффект может привести к токсическому действию кислорода и индифферентных газов, повышение содержания которых в крови и тканях вызывает наркотическую реакцию, первые признаки к-рой при использовании азото-кислородной смеси у человека возникают при давлении 4-8 ата. Увеличение парциального давления кислорода вначале снижает уровень функционирования сердечно-сосудистой и дыхательной систем вследствие выключения регулирующего влияния физиологической гипоксемии. При увеличении парциального давления кислорода в легких более 0,8-1 ата проявляется его токсическое действие (поражение легочной ткани, судороги, коллапс).

Проникающий и компрессионный эффекты повышенного давления газовой среды используются в клинической медицине при лечении различных болезней с общим и местным нарушением кислородного обеспечения (см. Баротерапия , Кислородная терапия).

Понижение давления оказывает на организм еще более выраженное действие. В условиях крайне разреженной атмосферы основным патогенетическим фактором, приводящим за несколько секунд к потере сознания, а за 4-5 мин.- к гибели, является уменьшение парциального давления кислорода во вдыхаемом воздухе, а затем в альвеолярном воздухе, крови и тканях (рис. 2 и 3). Умеренная гипоксия вызывает развитие приспособительных реакций системы дыхания и гемодинамики, направленных на поддержание кислородного снабжения в первую очередь жизненно важных органов (мозга, сердца). При выраженном недостатке кислорода угнетаются окислительные процессы (за счет дыхательных ферментов), нарушаются аэробные процессы выработки энергии в митохондриях. Это приводит вначале к расстройству функций жизненно важных органов, а затем к необратимым структурным повреждениям и гибели организма. Развитие приспособительных и патологических реакций, изменение функционального состояния организма и работоспособности человека при понижении атмосферного давления определяется степенью и скоростью уменьшения парциального давления кислорода во вдыхаемом воздухе, длительностью пребывания на высоте, интенсивностью выполняемой работы, исходным состоянием организма (см. Высотная болезнь).

Понижение давления на высотах (даже при исключении недостатка кислорода) вызывает в организме серьезные нарушения, объединяемые понятием «декомпрессионные расстройства», к которым относятся: высотный метеоризм, баротит и баросинусит, высотная декомпрессионная болезнь и высотная тканевая эмфизема.

Высотный метеоризм развивается вследствие расширения газов в желудочно-кишечном тракте при уменьшении барометрического давления на брюшную стенку при подъеме на высоты от 7-12 км и более. Определенное значение имеет и выход газов, растворенных в кишечном содержимом.

Расширение газов приводит к растяжению желудка и кишечника, поднятию диафрагмы, изменению положения сердца, раздражению рецепторного аппарата этих органов и возникновению патологических рефлексов, нарушающих дыхание и кровообращение. Нередко возникают резкие боли в области живота. Сходные явления иногда возникают и у водолазов при подъеме с глубины на поверхность.

Механизм развития баротита и баросинусита, проявляющихся чувством заложенности и боли соответственно в среднем ухе или придаточных полостях носа, подобен развитию высотного метеоризма.

Снижение давления, помимо расширения газов, содержащихся в полостях тела, обусловливает также и выход газов из жидкостей и тканей, в которых они были растворены в условиях давления на уровне моря или на глубине, и образование пузырьков газа в организме.

Этот процесс выхода растворенных газов (прежде всего азота) вызывает развитие декомпрессионной болезни (см.).

Рис. 4. Зависимость температуры кипения воды от высоты над уровнем моря и барометрического давления. Цифры давления расположены под соответствующими цифрами высоты.

При уменьшении атмосферного давления понижается температура кипения жидкостей (рис. 4). На высоте более 19 км, где барометрическое давление равно (или меньше) упругости насыщенных паров при температуре тела (37°), может произойти «закипание» межтканевой и межклеточной жидкости организма, в результате чего в крупных венах, в полости плевры, желудка, перикарда, в рыхлой жировой клетчатке, то есть в участках с низким гидростатическим и внутритканевым давлением, образуются пузыри водяного пара, развивается высотная тканевая эмфизема. Высотное «кипение» не затрагивает клеточные структуры, локализуясь только в межклеточной жидкости и крови.

Массивные пузыри пара могут блокировать работу сердца и циркуляцию крови и нарушать работу жизненно важных систем и органов. Это является серьезным осложнением острого кислородного голодания, развивающегося на больших высотах. Профилактика высотной тканевой эмфиземы может быть обеспечена созданием внешнего противодавления на тело высотным снаряжением.

Сам процесс понижения барометрического давления (декомпрессия) при определенных параметрах может стать повреждающим фактором. В зависимости от скорости декомпрессию разделяют на плавную (медленную) и взрывную. Последняя протекает за время менее 1 секунды и сопровождается сильным хлопком (как при выстреле), образованием тумана (конденсация паров воды из-за охлаждения расширяющегося воздуха). Обычно взрывная декомпрессия происходит на высотах при разрушении остекления герметичной кабины или скафандра с избыточным давлением.

При взрывной декомпрессии прежде всего страдают легкие. Быстрое нарастание внутрилегочного избыточного давления (более чем на 80 мм рт. ст.) приводит к значительному растяжению легочной ткани, что может вызвать разрыв легких (при их расширении в 2,3 раза). Взрывная декомпрессия может вызвать повреждение и желудочно-кишечного тракта. Величина возникающего избыточного давления в легких будет во многом зависеть от скорости истечения из них воздуха в процессе декомпрессии и объема воздуха в легких. Особенно опасно, если верхние дыхательные пути в момент декомпрессии окажутся закрытыми (при глотании, задержке дыхания) или декомпрессия совпадет с фазой глубокого вдоха, когда легкие наполняются большим количеством воздуха.

Температура атмосферы

Температура атмосферы с увеличением высоты вначале понижается (в среднем от 15° у земли до -56,5° на высоте 11-18 км). Вертикальный температурный градиент в этой зоне атмосферы составляет около 0,6° на каждые 100 м; он изменяется в течение суток и года (табл. 4).

Таблица 4. ИЗМЕНЕНИЯ ВЕРТИКАЛЬНОГО ТЕМПЕРАТУРНОГО ГРАДИЕНТА НАД СРЕДНЕЙ ПОЛОСОЙ ТЕРРИТОРИИ СССР

Рис. 5. Изменение температуры атмосферы на различных высотах. Границы сфер обозначены пунктиром.

На высотах 11 - 25 км температура становится постоянной и составляет -56,5°; затем температура начинает повышаться, достигая на высоте 40 км 30-40°, на высоте 50-60 км 70° (рис. 5), что связано с интенсивным поглощением озоном солнечной радиации. С высоты 60- 80 км температура воздуха вновь несколько снижается (до 60°), а затем прогрессивно повышается и составляет на высоте 120 км 270°, на 220 км 800°, на высоте 300 км 1500°, а

на границе с космическим пространством - больше 3000°. Следует заметить, что вследствие большой разреженности и малой плотности газов на этих высотах их теплоемкость и способность к нагреванию более холодных тел очень незначительна. В этих условиях передача тепла от одного тела к другому происходит только посредством лучеиспускания. Все рассматриваемые изменения температуры в атмосфере связаны с поглощением воздушными массами тепловой энергии Солнца - прямой и отраженной.

В нижней части атмосферы у поверхности Земли распределение температуры зависит от притока солнечной радиации и поэтому имеет в основном широтный характер, то есть линии равной температуры - изотермы - параллельны широтам. Так как атмосфера в нижних слоях нагревается от земной поверхности, то на горизонтальное изменение температуры сильно влияет распределение материков и океанов, термические свойства которых различны. Обычно в справочниках указывается температура, измеренная при сетевых метеорологических наблюдениях термометром, установленным на высоте 2 м над поверхностью почвы. Наиболее высокие температуры (до 58е) наблюдаются в пустынях Ирана, а в СССР - на юге Туркменистана (до 50°), наиболее низкие (до -87°) в Антарктиде, а в СССР - в районах Верхоянска и Оймякона (до -68°). Зимой вертикальный температурный градиент в отдельных случаях вместо 0,6° может превышать 1° на 100 м или даже принимать отрицательное значение. Днем в теплое время года он может быть равен многим десяткам градусов на 100 м. Различают также горизонтальный градиент температуры, который обычно относят к расстоянию 100 км по нормали к изотерме. Величина горизонтального градиента температуры - десятые доли градуса на 100 км, а во фронтальных зонах он может превышать 10° на 100 м.

Организм человека способен поддерживать тепловой гомеостаз (см.) в довольно узких пределах колебаний температуры наружного воздуха - от 15 до 45°. Существенные различия температуры атмосферы у Земли и на высотах требуют применения специальных защитных технических средств для обеспечения теплового баланса между организмом человека и внешней средой в высотных и космических полетах.

Характерные изменения параметров атмосферы (температуры, давления, химического состава, электрического состояния) позволяют условно разделить атмосферу на зоны, или слои. Тропосфера - ближайший слой к Земле, верхняя граница которого простирается на экваторе до 17-18 км, на полюсах - до 7-8 км, в средних широтах - до 12-16 км. Для тропосферы характерно экспоненциальное падение давления, наличие постоянного вертикального температурного градиента, горизонтальные и вертикальные перемещения воздушных масс, значительные изменения влажности воздуха. В тропосфере находится основная масса атмосферы, а также значительная часть биосферы; здесь возникают все основные виды облаков, формируются воздушные массы и фронты, развиваются циклоны и антициклоны. В тропосфере из-за отражения снежным покровом Земли солнечных лучей и охлаждения приземных слоев воздуха имеет место так называемая инверсия, то есть возрастание температуры в атмосфере снизу вверх вместо обычного убывания.

В теплое время года в тропосфере происходит постоянное турбулентное (беспорядочное, хаотичное) перемешивание воздушных масс и перенос тепла потоками воздуха (конвекция). Конвекция уничтожает туманы и уменьшает запыленность нижнего слоя атмосферы.

Вторым слоем атмосферы является стратосфера .

Она начинается от тропосферы узкой зоной (1-3 км) с постоянной температурой (тропопауза) и простирается до высот около 80 км. Особенностью стратосферы является прогрессирующая разреженность воздуха, исключительно высокая интенсивность ультрафиолетового излучения, отсутствие водяных паров, наличие большого количества озона и постепенное повышение температуры. Высокое содержание озона обусловливает ряд оптических явлений (миражи), вызывает отражение звуков и оказывает существенное влияние на интенсивность и спектральный состав электромагнитных излучений. В стратосфере происходит постоянное перемешивание воздуха, поэтому состав его аналогичен воздуху тропосферы, хотя плотность его у верхних границ стратосферы крайне мала. Преобладающие ветры в стратосфере - западные, а в верхней зоне наблюдается переход к восточным ветрам.

Третьим слоем атмосферы является ионосфера , которая начинается от стратосферы и простирается до высот 600-800 км.

Отличительные признаки ионосферы - крайняя разреженность газовой среды, высокая концентрация молекулярных и атомарных ионов и свободных электронов, а также высокая температура. Ионосфера оказывает влияние на распространение радиоволн, обусловливая их преломление, отражение и поглощение.

Основным источником ионизации высоких слоев атмосферы является ультрафиолетовое излучение Солнца. При этом из атомов газов выбиваются электроны, атомы превращаются в положительные ионы, а выбитые электроны остаются свободными или захватываются нейтральными молекулами с образованием отрицательных ионов. На ионизацию ионосферы оказывают влияние метеоры, корпускулярное, рентгеновское и гамма-излучение Солнца, а также сейсмические процессы Земли (землетрясения, вулканические извержения, мощные взрывы), которые генерируют акустические волны в ионосфере, усиливающие амплитуду и скорость колебаний частиц атмосферы и способствующие ионизации газовых молекул и атомов (см. Аэроионизация).

Электрическая проводимость в ионосфере, связанная с высокой концентрацией ионов и электронов, очень велика. Повышенная электропроводимость ионосферы играет важную роль в отражении радиоволн и возникновении полярных сияний.

Ионосфера - это область полетов искусственных спутников Земли и межконтинентальных баллистических ракет. В настоящее время космическая медицина изучает возможные влияния на организм человека условий полета в этой части атмосферы.

Четвертый, внешний слой атмосферы - экзосфера . Отсюда атмосферные газы рассеиваются в мировое пространство за счет диссипации (преодоления молекулами сил земного тяготения). Затем происходит постепенный переход от атмосферы к межпланетному космическому пространству. От последнего экзосфера отличается наличием большого количества свободных электронов, образующих 2-й и 3-й радиационные пояса Земли.

Разделение атмосферы на 4 слоя весьма условно. Так, по электрическим параметрам всю толщу атмосферы делят на 2 слоя: нейтросферу, в которой преобладают нейтральные частицы, и ионосферу. По температуре различают тропосферу, стратосферу, мезосферу и термосферу, разделенные соответственно тропо-, страто- и мезопаузами. Слой атмосферы, расположенный между 15 и 70 км и характеризующийся высоким содержанием озона, называют озоносферой.

Для практических целей удобно пользоваться Международной стандартной атмосферой (MCA), для к-рой принимают следующие условия: давление на уровне моря при t° 15° равно 1013 мбар (1,013 X 10 5 нм 2 , или 760 мм рт. ст.); температура уменьшается на 6,5° на 1 км до уровня 11 км (условная стратосфера), а затем остается постоянной. В СССР принята стандартная атмосфера ГОСТ 4401 - 64 (табл. 3).

Осадки. Поскольку основная масса водяного пара атмосферы сосредоточена в тропосфере, то и процессы фазовых переходов воды, обусловливающие осадки, протекают преимущественно в тропосфере. Тропосферные облака обычно закрывают около 50% всей земной поверхности, тогда как облака в стратосфере (на высотах 20-30 км) и вблизи мезопаузы, получившие название соответственно перламутровых и серебристых, наблюдаются сравнительно редко. В результате конденсации водяного пара в тропосфере образуются облака и выпадают осадки.

По характеру выпадения осадки разделяются на 3 типа: обложные, ливневые, моросящие. Количество осадков определяется толщиной слоя выпавшей воды в миллиметрах; измерение осадков производят дождемерами и осадкомерами. Интенсивность осадков выражается в миллиметрах в 1 минуту.

Распределение осадков в отдельные сезоны и дни, а также по территории крайне неравномерно, что обусловлено циркуляцией атмосферы и влиянием поверхности Земли. Так, на Гавайских островах в среднем за год выпадает 12 000мм, а в наиболее сухих областях Перу и Сахары осадки не превышают 250 мм, а иногда не выпадают по нескольку лет. В годовой динамике выпадения осадков различают следующие типы: экваториальный - с максимумом выпадения после весеннего и осеннего равноденствия; тропический - с максимумом осадков летом; муссонный - с очень резко выраженным пиком летом и сухой зимой; субтропический - с максимумом осадков зимой и сухим летом; континентальный умеренных широт - с максимумом выпадения осадков летом; морской умеренных широт - с максимумом осадков зимой.

Весь атмосферно-физический комплекс климатометеорологических факторов, составляющий погоду, широко используется для укрепления здоровья, закаливания и в лечебных целях (см. Климатотерапия). Наряду с этим установлено, что резкие колебания этих атмосферных факторов могут отрицательно влиять на физиологические процессы в организме, вызывая развитие различных патологических состояний и обострение болезней, получивших название метеотропных реакций (см. Климатопатология). Особое значение в этом отношении имеют частые длительные возмущения атмосферы и резкие скачкообразные колебания метеофакторов.

Метеотропные реакции наблюдаются чаще у людей, страдающих заболеваниями сердечно-сосудистой системы, полиартритами, бронхиальной астмой, язвенной болезнью, заболеваниями кожи.

Библиография: Белинский В. А. и Побияхо В. А. Аэрология, Л., 1962, библиогр.; Биосфера и ее ресурсы, под ред. В. А. Ковды, М., 1971; Данилов А. Д. Химия ионосферы, Л., 1967; Колобков Н. В. Атмосфера и ее жизнь, М., 1968; Калитин H.H. Основы физики атмосферы в применении к медицине, Л., 1935; Матвеев Л. Т. Основы общей метеорологии, Физика атмосферы, Л., 1965, библиогр.; Минх А. А. Ионизация воздуха и ее гигиеническое значение, М., 1963, библиогр.; он же, Методы гигиенических исследований, М., 1971, библиогр.; Тверской П. Н. Курс метеорологии, Л., 1962; Уманский С. П. Человек в космосе, М., 1970; Хвостиков И. А. Высокие слои атмосферы, Л., 1964; X р г и а н A. X. Физика атмосферы, Л., 1969, библиогр.; Хромов С. П. Метеорология и климатология для географических факультетов, Л., 1968.

Влияние на организм повышенного и пониженного давления - Армстронг Г. Авиационная медицина, пер. с англ., М., 1954, библиогр.; Зальцман Г.Л. Физиологические основы пребывания человека в условиях повышенного давления газов среды, Л., 1961, библиогр.; Иванов Д. И. и Хромушкин А. И. Системы жизнеобеспечения человека при высотных и космических полетах, М., 1968, библиогр.; Исаков П. К. и др. Теория и практика авиационной медицины, М., 1971, библиогр.; Коваленко Е. А. и Черняков И. Н. Кислород тканей при экстремальных факторах полета, М., 1972, библиогр.; Майлс С. Подводная медицина, пер. с англ., М., 1971, библиогр.; Busby D. Е. Space clinical medicine, Dordrecht, 1968.

И. H. Черняков, M. Т. Дмитриев, С. И. Непомнящий.

Энциклопедичный YouTube

    1 / 5

    ✪ Земля космический корабль (14 Серия) - Атмосфера

    ✪ Почему атмосферу не втянуло в космический вакуум?

    ✪ Вход в атмосферу Земли корабля "Союз ТМА-8"

    ✪ Атмосфера строение, значение, изучение

    ✪ О. С. Угольников "Верхняя атмосфера. Встреча Земли и космоса"

    Субтитры

Граница атмосферы

Атмосферой принято считать ту область вокруг Земли, в которой газовая среда вращается вместе с Землёй как единое целое . Атмосфера переходит в межпланетное пространство постепенно, в экзосфере , начинающейся на высоте 500-1000 км от поверхности Земли .

По определению, предложенному Международной авиационной федерацией , граница атмосферы и космоса проводится по линии Кармана , расположенной на высоте около 100 км, выше которой авиационные полёты становятся полностью невозможными. NASA использует в качестве границы атмосферы отметку в 122 километра (400 000 футов ), где «шаттлы » переключаются с маневрирования с помощью двигателей на аэродинамическое маневрирование .

Физические свойства

Кроме указанных в таблице газов, в атмосфере содержатся Cl 2 , SO 2 , NH 3 , СО , O 3 , NO 2 , углеводороды , HCl , , HBr , , пары , I 2 , Br 2 , а также и многие другие газы в незначительных количествах. В тропосфере постоянно находится большое количество взвешенных твёрдых и жидких частиц (аэрозоль). Самым редким газом в Земной атмосфере является радон (Rn).

Строение атмосферы

Пограничный слой атмосферы

Нижний слой тропосферы (1-2 км толщиной), в котором состояние и свойства поверхности Земли непосредственно влияют на динамику атмосферы.

Тропосфера

Её верхняя граница находится на высоте 8-10 км в полярных, 10-12 км в умеренных и 16-18 км в тропических широтах; зимой ниже, чем летом.
Нижний, основной слой атмосферы содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция , возникают облака , развиваются циклоны и антициклоны . Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 метров.

Тропопауза

Переходный слой от тропосферы к стратосфере, слой атмосферы, в котором прекращается снижение температуры с высотой.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11-25 км (нижний слой стратосферы) и повышение её в слое 25-40 км от −56,5 до +0,8 ° (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой .

Стратопауза

Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).

Мезосфера

Термосфера

Верхний предел - около 800 км. Температура растёт до высот 200-300 км, где достигает значений порядка 1500 К, после чего остаётся почти постоянной до больших высот. Под действием солнечной радиации и космического излучения происходит ионизация воздуха («полярные сияния ») - основные области ионосферы лежат внутри термосферы. На высотах свыше 300 км преобладает атомарный кислород. Верхний предел термосферы в значительной степени определяется текущей активностью Солнца . В периоды низкой активности - например, в 2008-2009 годах - происходит заметное уменьшение размеров этого слоя .

Термопауза

Область атмосферы, прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура фактически не меняется с высотой.

Экзосфера (сфера рассеяния)

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до −110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200-250 км соответствует температуре ~150 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000-3500 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум , который заполнен редкими частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме чрезвычайно разрежённых пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

Обзор

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы - около 20 %; масса мезосферы - не более 0,3 %, термосферы - менее 0,05 % от общей массы атмосферы.

На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу .

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу . Гетеросфера - это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера . Граница между этими слоями называется турбопаузой , она лежит на высоте около 120 км.

Другие свойства атмосферы и воздействие на человеческий организм

Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 9 км, хотя примерно до 115 км атмосфера содержит кислород.

Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.

История образования атмосферы

Согласно наиболее распространённой теории, атмосфера Земли на протяжении истории последней перебыла в трёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера . На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углекислым газом, аммиаком , водяным паром). Так образовалась вторичная атмосфера . Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:

  • утечка легких газов (водорода и гелия) в межпланетное пространство ;
  • химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.

Постепенно эти факторы привели к образованию третичной атмосферы , характеризующейся гораздо меньшим содержанием водорода и гораздо большим - азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

Азот

Образование большого количества азота N 2 обусловлено окислением аммиачно-водородной атмосферы молекулярным кислородом О 2 , который стал поступать с поверхности планеты в результате фотосинтеза, начиная с 3 млрд лет назад. Также азот N 2 выделяется в атмосферу в результате денитрификации нитратов и других азотосодержащих соединений. Азот окисляется озоном до NO в верхних слоях атмосферы.

Азот N 2 вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окисление молекулярного азота озоном при электрических разрядах в малых количествах используется в промышленном изготовлении азотных удобрений. Окислять его с малыми энергозатратами и переводить в биологически активную форму могут цианобактерии (сине-зелёные водоросли) и клубеньковые бактерии, формирующие ризобиальный симбиоз с бобовыми растениями, которые могут быть эффективными сидератами - растениями, которые не истощают, а обогащают почву естественными удобрениями.

Кислород

Состав атмосферы начал радикально меняться с появлением на Земле живых организмов , в результате фотосинтеза , сопровождающегося выделением кислорода и поглощением углекислого газа. Первоначально кислород расходовался на окисление восстановленных соединений - аммиака, углеводородов, закисной формы железа , содержавшейся в океанах и другом. По окончании данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами. Поскольку это вызвало серьёзные и резкие изменения многих процессов, протекающих в атмосфере , литосфере и биосфере , это событие получило название Кислородная катастрофа .

Благородные газы

Загрязнение атмосферы

В последнее время на эволюцию атмосферы стал оказывать влияние человек. Результатом человеческой деятельности стал постоянный рост содержания в атмосфере углекислого газа из-за сжигания углеводородного топлива, накопленного в предыдущие геологические эпохи. Громадные количества СО 2 потребляются при фотосинтезе и поглощаются мировым океаном . Этот газ поступает в атмосферу благодаря разложению карбонатных горных пород и органических веществ растительного и животного происхождения, а также вследствие вулканизма и производственной деятельности человека. За последние 100 лет содержание СО 2 в атмосфере возросло на 10 %, причём основная часть (360 млрд тонн) поступила в результате сжигания топлива. Если темпы роста сжигания топлива сохранятся, то в ближайшие 200-300 лет количество СО 2 в атмосфере удвоится и может привести к глобальным изменениям климата .

Сжигание топлива - основной источник и загрязняющих газов (СО , , SO 2). Диоксид серы окисляется кислородом воздуха до SO 3 , а оксид азота до NO 2 в верхних слоях атмосферы, которые в свою очередь взаимодействуют с парами воды, а образующиеся при этом серная кислота Н 2 SO 4 и азотная кислота НNO 3 выпадают на поверхность Земли в виде так называемых кислотных дождей. Использование

Газовая оболочка вокруг земного шара называется атмосферой, а газ, который её образует – воздухом. В зависимости от различных физических и химических свойств атмосфера делится на слои. Какие же они, слои атмосферы?

Температурные слои атмосферы

В зависимости от удаленности от земной поверхности температура атмосферы меняется и в связи с этим принято её деление на следующие слои:
Тропосфера. Это самый «нижний» температурный слой атмосферы. В средних широтах высота его равна 10-12 километров, а в районе тропиков – 15-16 километров. В тропосфере температура атмосферного воздуха с увеличением высоты снижается, в среднем примерно на 0,65̊С на каждые 100 метров.
Стратосфера. Этот слой расположен выше тропосферы, в интервале высот 11-50 километров. Между тропосферой и стратосферой находится переходный атмосферный слой – тропопауза. Средняя температура воздуха тропопаузы равна -56,6̊С, в районе тропиков зимой -80,5̊С и летом -66,5̊С. Температура нижнего слоя самой стратосферы медленно понижается в среднем на 0,2̊С на каждые 100 метров, а верхнего – повышается и на верхней границе стратосферы температура воздуха равна уже 0̊С.
Мезосфера. В интервале высот 50-95 километров, выше стратосферы, расположен атмосферный слой мезосфера. От стратосферы он отделен стратопаузой. Температура мезосферы понижается с повышением высоты, в среднем понижение составляет 0,35̊С на каждые 100 метров.
Термосфера. Расположен этот атмосферный слой выше мезосферы и отделен от неё мезопаузой. Температура мезопаузы составляет от -85 до -90̊С, но с увеличением высоты термосфера термосфера интенсивно нагревается и в интервале высот 200-300 километров она достигает 1500̊С, после чего уже не меняется. Нагревание термосферы происходит в результате поглощения кислородом ультрафиолетовой радиации Солнца.

Слои атмосферы, разделенные по газовому составу

По составу газа атмосфера делится на гомосферу и гетеросферу. Гомосфера – это нижний слой атмосферы и газовый состав его однороден. Верхняя граница этого слоя проходит на высоте 100 километров.

Гетеросфера расположена в интервале высот от гомосферы и до внешней границы атмосферы. Газовый состав её неоднороден, так как под действием солнечного и космического излучения молекулы воздуха гетеросферы распадаются на атомы (процесс фотодиссоциации).

В гетеросфере при распаде молекул на атомы выделяются заряженные частицы – электроны и ионы, которые создают слой ионизированной плазмы – ионосферу. Ионосфера располагается от верхней границы гомосферы до высот 400-500 километров, она обладает свойством отражать радиоволны, что позволяет нам осуществлять радиосвязь.

Выше 800 километров молекулы легких газов атмосферы начинают улетучиваться в космос, и этот атмосферный слой получил название экзосфера.

Слои атмосферы и содержание озона

Максимальное количество озона (химическая формула О3) содержится в атмосфере на высоте 20-25 километров. Обусловлено это большим количеством кислорода в воздухе и наличием жесткого солнечного излучения. Эти слои атмосферы называются озоносферой. Ниже озоносферы содержание озона в атмосфере уменьшается.

Голубая планета...

Эта тема должна была появится на сайте одной из первых. Ведь и вертолеты – атмосферные летательные аппараты. Атмосфера Земли – их, так сказать, среда обитания:-). А физические свойства воздуха как раз и определяют качество этого обитания:-). То есть это одна из основ. И об основе всегда пишут вначале. Но сообразил я об этом только сейчас. Однако лучше, как известно, поздно, чем никогда… Коснемся этого вопроса, в дебри и ненужные сложности однако не залезая:-).

Итак… Атмосфера Земли . Это газовая оболочка нашей голубой планеты. Такое название всем известно. А почему голубая? Просто потому, что «голубая» (а также синяя и фиолетовая) составляющая солнечного света (спектра) наиболее хорошо рассеивается в атмосфере, окрашивая ее тем самым в голубовато-синеватые, иногда с оттенком фиолетового тона (в солнечный день, конечно:-)).

Состав атмосферы Земли.

Состав атмосферы достаточно широк. Перечислять в тексте все составляющие не буду, для этого есть хорошая иллюстрация.Состав всех этих газов практически постоянен, за исключением углекислого газа (СО 2 ). Кроме того в атмосфере обязательно содержится вода в виде паров, взвеси капель или кристаллов льда. Количество воды непостоянно и зависит от температуры и, в меньшей степени, от давления воздуха. Кроме того атмосфера Земли (особенно нынешняя) содержит и определенное количество я бы сказал «всякой гадости»:-). Это SO 2 , NH 3 , CO , HCl , NO , кроме того есть там пары ртути Hg . Правда все это находится там в небольших количествах, слава богу:-).

Атмосферу Земли принято делить на несколько следующих друг за другом по высоте над поверхностью зон.

Первая, самая близкая к земле - это тропосфера . Это самый нижний и, так сказать, основной слой для жизнедеятельности разного вида. В нем содержится 80% массы всего атмосферного воздуха (хотя по объему она составляет всего около 1% всей атмосферы) и около 90% всей атмосферной воды. Основная масса всех ветров, облаков, дождей и снегов 🙂 — оттуда. Тропосфера простирается до высот порядка 18 км в тропических широтах и до 10 км в полярных. Температура воздуха в ней падает с подъемом на высоту примерно 0,65º на каждые 100 м.

Атмосферные зоны.

Зона вторая – стратосфера . Надо сказать, что между тропосферой и стратосферой выделяют еще одну узкую зону – тропопаузу . В ней прекращается падение температуры с высотой. Тропопауза имеет среднюю толщину 1,5- 2 км, но границы ее нечетки и тропосфера часто перекрывает стратосферу.

Так вот стратосфера имеет высоту в среднем от 12 км до 50 км. Температура в ней до 25 км остается неизменной (порядка -57ºС), затем где-то до 40 км повышается примерно до 0ºС и далее до 50 км остается неизменной. Стратосфера – относительно спокойная часть атмосферы земли. Неблагоприятные погодные условия в ней практически отсутствуют. Именно в стратосфере располагается знаменитый озоновый слой на высотах от 15-20 км до 55-60 км.

Далее следует небольшой пограничный слой стратопауза , температура в которой сохраняется около 0ºС, и затем следующая зона мезосфера. Она простирается до высот 80-90 км, и в ней температура падает примерно до 80ºС. В мезосфере обычно становятся видны мелкие метеоры, которые начинают в ней светиться и там же сгорают.

Следующий узкий промежуток – мезопауза и за ней зона термосфера . Ее высота – до 700-800 км. Здесь температура опять начинает повышаться и на высотах порядка 300 км может достигать величин порядка 1200ºС. Далее она остается постоянной. Внутри термосферы до высоты около 400 км расположена ионосфера. Здесь воздух сильно ионизирован из-за воздействия солнечной радиации и обладает большой электропроводностью.

Следующая и, вобщем-то, последняя зона – экзосфера . Это так называемая зона рассеяния . Здесь в основном присутствует очень сильно разреженный водород и гелий (с преобладанием водорода). На высотах порядка 3000 км экзосфера переходит в ближнекосмический вакуум.

Вот примерно где-то так. Почему примерно? Потому что слои эти достаточно условны. Возможны различные изменения высоты, состава газов, воды, величины температуры, ионизации и так далее. Кроме того существует еще немало терминов, определяющих строение и состояние атмосферы земли.

Например гомосфера и гетеросфера . В первой атмосферные газы хорошо перемешаны, и их состав достаточно однороден. Вторая расположена выше первой и такого перемешивания там уже практически нет. Газы в ней разделяет гравитация. Граница между этими слоями расположена на высоте 120 км, и называется она турбопауза .

С терминами пожалуй покончим, но обязательно еще добавлю, что условно принято считать, что граница атмосферы расположена на высоте 100 км над уровнем моря. Эта граница называется Линия Кармана .

Добавлю еще две картинки для иллюстрации строения атмосферы. Первая, правда, на немецком, но зато полная и достаточно легка в понимании:-). Ее можно увеличить и хорошо рассмотреть. Вторая показывает изменение температуры атмосферы с высотой.

Строение атмосферы Земли.

Изменение температуры воздуха с высотой.

Современные пилотируемые орбитальные космические аппараты летают на высотах около 300-400 км . Однако это уже не авиация, хотя область, конечно, в определенном смысле близкородственная, и мы о ней еще непременно поговорим:-).

Зона авиации – это тропосфера. Современные атмосферные летательные аппараты могут летать и в нижних слоях стратосферы. Например практический потолок МИГ-25РБ – 23000 м .

Полет в стратосфере.

И именно физические свойства воздуха тропосферы определяют каким будет полет, насколько будет эффективна система управления самолета, как будет влиять на него турбулентность в атмосфере, как будут работать двигатели.

Первое основное свойство – это температура воздуха . В газодинамике она может определяться по шкале Цельсия либо по шкале Кельвина .

Температура t 1 на заданной высоте Н по шкале Цельсия определяется:

t 1 = t — 6,5Н , где t – температура воздуха у земли.

Температура по шкале Кельвина называется абсолютной температурой , ноль по этой шкале – это абсолютный ноль. При абсолютном нуле прекращается тепловое движение молекул. Абсолютный ноль по шкале Кельвина соответствует -273º по шкале Цельсия.

Соответственно температура Т на высоте Н по шкале Кельвина определяется:

T = 273K + t — 6,5H

Давление воздуха . Атмосферное давление измеряется в Паскалях (Н/м 2), в старой системе измерения в атмосферах (атм.). Существует еще такое понятие как барометрическое давление. Это давление, измеренное в миллиметрах ртутного столба при помощи ртутного барометра. Барометрическое давление (давление на уровне моря) равное 760 мм рт. ст. называется стандартным. В физике 1 атм. как раз и равна 760 мм рт.ст.

Плотность воздуха . В аэродинамике чаще всего пользуются таким понятием, как массовая плотность воздуха. Это масса воздуха в 1 м 3 объема. Плотность воздуха с высотой меняется, воздух становится более разреженным.

Влажность воздуха . Показывает количество воды, находящееся в воздухе. Существует понятие «относительная влажность ». Это отношение массы водяного пара к максимально возможной при данной температуре. Понятие 0%, то есть когда воздух совершенно сухой может существовать вобщем-то только в лаборатории. С другой стороны 100%-ная влажность вполне реальна. Это означает, что воздух впитал в себя всю воду, которую мог впитать. Что-то типа абсолютно «полной губки». Высокая относительная влажность снижает плотность воздуха, а малая, соответственно повышает.

В связи с тем, что полеты самолетов происходят при разных атмосферных условиях, то и их полетные и аэродинамические параметры на одном режиме полета могут быть различными. Поэтому для правильной оценки этих параметров введена Международная стандартная атмосфера (МСА) . Она показывает изменение состояния воздуха с подъемом на высоту.

За основные приняты параметры состояния воздуха при нулевой влажности:

давление P = 760 мм рт. ст. (101,3 кПА);

температура t = +15°C (288 К);

массовая плотность ρ = 1,225 kg/m 3 ;

Для МСА принято (как уже было сказано выше:-)), что температура падает в тропосфере на 0,65º на каждые 100 метров высоты.

Стандартная атмосфера (пример до 10000 м).

Таблицы МСА используются при градуировании приборов, а также для штурманских и инженерных расчетов.

Физические свойства воздуха включают в себя также такие понятия как инертность, вязкость и сжимаемость.

Инертность — свойство воздуха, характеризующее его способность сопротивляться изменению состояния покоя или равномерного прямолинейного движения. Мерой инертности является массовая плотность воздуха. Чем она выше, тем выше инертность и сила сопротивления среды при движении в ней самолета.

Вязкость . Определяет сопротивление трения об воздух при движении самолета.

Сжимаемость определяет изменение плотности воздуха при изменении давления. На малых скоростях движения летательного аппарата (до 450 км/ч) изменения давления при обтекании его воздушным потоком не происходит, но при больших скоростях начинает проявляться эффект сжимаемости. Особенно сказывается его влияние на сверхзвуке. Это отдельная область аэродинамики и тема для отдельной статьи:-).

Ну вот кажется пока все… Пора закончить это слегка нудноватое перечисление, без которого однако не обойтись:-). Атмосфера Земли , ее параметры, физические свойства воздуха также важны для летательного аппарата, как и параметры самого аппарата, и о них нельзя было не упомянуть.

Пока, до следующих встреч и более интересных тем 🙂 …

P.S. На сладкое предлагаю посмотреть ролик снятый из кабины спарки МИГ-25ПУ при его полете в стратосферу. Снимал, видимо, турист, у которого есть деньги для таких полетов:-). Снято в основном все через лобовое стекло. Обратите внимание на цвет неба…

Изменявшие земную поверхность. Не меньшее значение имела деятельность ветра , переносившего мелкие фракции горных пород на большие расстояния. Существенно влияли на разрушение горных пород колебания температуры и другие атмосферные факторы. Наряду с этим А. защищает поверхность Земли от разрушительного действия падающих метеоритов , большая часть которых сгорает при вхождении в плотные слои атмосферы.

Деятельность живых организмов, оказавшая сильное влияние на развитие А. сама в очень большой степени зависит от атмосферных условий. А. задерживает большую часть ультрафиолетового излучения Солнца , которое губительно действует на многие организмы. Атмосферный кислород используется в процессе дыхания животными и растениями , атмосферная углекислота - в процессе питания растений. Климатические факторы, в особенности термический режим и режим увлажнения, влияют на состояние здоровья и на деятельность человека . Особенно сильно зависит от климатических условий сельское хозяйство . В свою очередь, деятельность человека оказывает всё возрастающее влияние на состав А. и на климатический режим.

Строение атмосферы

Вертикальное распределение температуры в атмосфере и связанная с этим терминология.

Многочисленные наблюдения показывают, что А. имеет четко выраженное слоистое строение (см. рис.). Основные черты слоистой структуры А. определяются в первую очередь особенностями вертикального распределения температуры . В самой нижней части А. - тропосфере , где наблюдается интенсивное турбулентное перемешивание (см. Турбулентность в атмосфере и гидросфере), температура убывает с увеличением высоты, причём уменьшение температуры по вертикали составляет в среднем 6° на 1 км. Высота тропосферы изменяется от 8-10 км в полярных широтах до 16-18 км у экватора. В связи с тем, что плотность воздуха быстро убывает с высотой, в тропосфере сосредоточено около 80% всей массы А. Над тропосферой расположен переходный слой - тропопауза с температурой 190-220 , выше которой начинается стратосфера. В нижней части стратосферы уменьшение температуры с высотой прекращается, и температура остаётся приблизительно постоянной до высоты 25 км - т. н. изотермическая область (нижняя стратосфера); выше температура начинает возрастать - область инверсии (верхняя стратосфера). Температура достигает максимума ~ 270 K на уровне стратопаузы , расположенной на высоте около 55 км. Слой А., находящийся на высотах от 55 до 80 км, где вновь происходит понижение температуры с высотой, получил название мезосферы . Над ней находится переходный слой - мезопауза , выше которой располагается термосфера , где температура, увеличиваясь с высотой, достигает очень больших значений (св. 1000 K). Ещё выше (на высотах ~ 1000 км и более) находится экзосфера , откуда атмосферные газы рассеиваются в мировое пространство за счёт диссипации и где происходит постепенный переход от А. к межпланетному пространству . Обычно все слои А., находящиеся выше тропосферы, называются верхними, хотя иногда к нижним слоям А. относят также стратосферу или её нижняя часть.

Все структурные параметры А. (температура, давление, плотность) обладают значительной пространственно-временной изменчивостью (широтной, годовой, сезонной, суточной и др.). Поэтому данные рис. отражают лишь среднее состояние атмосферы.

Схема строения атмосферы:
1 - уровень моря ; 2 - высшая точка Земли - г. Джомолунгма (Эверест), 8848 м; 3 - кучевые облака хорошей погоды; 4 - мощно-кучевые облака; 5 - ливневые (грозовые) облака; 6 - слоисто-дождевые облака; 7 - перистые облака; 8 - самолёт ; 9 - слой максимальной концентрации озона ; 10 - перламутровые облака ; 11 - стратостат ; 12 - радиозонд ; 1З - метеоры ; 14 - серебристые облака ; 15 - полярные сияния ; 16 - американский самолёт-ракета Х-15; 17, 18, 19 - радиоволны, отражающиеся от ионизованных слоев и возвращающиеся на Землю; 20 - звуковая волна, отражающаяся от тёплого слоя и возвращающаяся на Землю; 21 - первый советский искусственный спутник Земли; 22 - межконтинентальная баллистическая ракета ; 23 - геофизические исследовательские ракеты; 24 - метеорологические спутники; 25 - космические корабли «Союз-4» и «Союз-5»; 26 - космические ракеты, уходящие за пределы атмосферы, а также радиоволна, пронизывающая ионизованные слои и уходящая из атмосферы; 27, 28 - диссипация (ускальзывание) атомов Н и Не; 29 - траектория солнечных протонов Р; 30 - проникновение ультрафиолетовых лучей (длина волны l > 2000 и l < 900).

Слоистая структура атмосферы имеет и много других разнообразных проявлений. Неоднороден по высоте химический состав А. Если на высотах до 90 км, где существует интенсивное перемешивание А., относительный состав постоянных компонент атмосферы остаётся практически неизменным (вся эта толща А. получила название гомосферы), то выше 90 км - в гетеросфере - под влиянием диссоциации молекул атмосферных газов ультрафиолетовым излучением Солнца происходит сильное изменение химического состава А. с высотой. Типичные черты этой части А. - слои озона и собственное свечение атмосферы. Сложная слоистая структура характерна для атмосферного аэрозоля - взвешенных в А. твёрдых частиц земного и космического происхождения. Наиболее часто встречаются аэрозольные слои под тропопаузой и на высоте около 20 км. Слоистым является вертикальное распределение электронов и ионов в А., что выражается в существовании D-, Е- и F-cлоёв ионосферы .

Состав атмосферы

Одна из наиболее оптически активных компонент - атмосферная аэрозоль - взвешенные в воздухе частицы размером от нескольких нм до нескольких десятков мкм, образующиеся при конденсации водяного пара и попадающие в А. с земной поверхности в результате индустриальных загрязнений, вулканических извержений, а также из космоса . Аэрозоль наблюдается как в тропосфере, так и в верхних слоях А. Концентрация аэрозоля быстро убывает с высотой, но на этот ход налагаются многочисленные вторичные максимумы, связанные с существованием аэрозольных слоев.

Верхние слои атмосферы

Выше 20-30 км молекулы А. в результате диссоциации в той или иной степени распадаются на атомы и в А. появляются свободные атомы и новые более сложные молекулы. Несколько выше становятся существенными ионизационные процессы.

Наиболее неустойчива область гетеросферы , где процессы ионизации и диссоциации порождают многочисленные фотохимические реакции, определяющие изменение состава воздуха с высотой. Здесь происходит также и гравитационное разделение газов, выражающееся в постепенном обогащении А. более лёгкими газами по мере увеличения высоты. По данным ракетных измерений, гравитационное разделение нейтральных газов - аргона и азота - наблюдается выше 105-110 км . Основные компоненты А. в слое 100-210 км - молекулярный азот, молекулярный кислород и атомарный кислород (концентрация последнего на уровне 210 км достигает 77 ± 20% от концентрации молекулярного азота).

Верхняя часть термосферы состоит главным образом из атомарного кислорода и азота. На высоте 500 км молекулярный кислород практически отсутствует, но молекулярный азот, относительная концентрация которого сильно уменьшается, всё ещё доминирует над атомарным.

В термосфере важную роль играют приливные движения (см. Приливы и отливы), гравитационные волны, фотохимические процессы, увеличение длины свободного пробега частиц, а также другие факторы. Результаты наблюдений торможения спутников на высотах 200-700 км привели к выводу о наличии взаимосвязи между плотностью, температурой и солнечной активностью , с которой связано существование суточного, полугодового и годового хода структурных параметров. Возможно, что суточные вариации в значительной степени обусловлены атмосферными приливами. В периоды солнечных вспышек температура на высоте 200 км в низких широтах может достигать 1700-1900°C.

Выше 600 км преобладающей компонентой становится гелий , а ещё выше, на высотах 2-20 тыс. км, простирается водородная корона Земли. На этих высотах Земля окружена оболочкой из заряженных частиц, температура которых достигает нескольких десятков тысяч градусов. Здесь располагаются внутренний и внешний радиационные пояса Земли . Внутренний пояс, заполненный главным образом протонами с энергией в сотни Мэв, ограничен высотами 500-1600 км на широтах от экватора до 35-40°. Внешний пояс состоит из электронов с энергиями порядка сотен кэв. За внешним поясом существует «самый внешний пояс», в котором концентрация и потоки электронов значительно выше. Вторжение солнечного корпускулярного излучения (солнечного ветра) в верхние слои А. порождает полярные сияния. Под влиянием этой бомбардировки верхней А. электронами и протонами солнечной короны возбуждается также собственное свечение атмосферы, которое раньше называлось свечением ночного неба . При взаимодействии солнечного ветра с магнитным полем Земли создаётся зона, получившая назв. магнитосферы Земли , куда не проникают потоки солнечной плазмы .

Для верхних слоев А. характерно существование сильных ветров, скорость которых достигает 100-200 м/сек. Скорость и направление ветра в пределах тропосферы, мезосферы и нижней термосферы обладают большой пространственно-временной изменчивостью. Хотя масса верхних слоев А. незначительна по сравнению с массой нижних слоев и энергия атмосферных процессов в высоких слоях сравнительно невелика, по-видимому, существует некоторое влияние высоких слоев А. на погоду и климат в тропосфере.

Радиационный, тепловой и водный балансы атмосферы

Практически единственным источником энергии для всех физических процессов, развивающихся в А., является солнечная радиация. Главная особенность радиационного режима А. - т. н. парниковый эффект: А. слабо поглощает коротковолновую солнечную радиацию (большая её часть достигает земной поверхности), но задерживает длинноволновое (целиком инфракрасное) тепловое излучение земной поверхности, что значительно уменьшает теплоотдачу Земли в космическое пространство и повышает её температуру.

Приходящая в А. солнечная радиация частично поглощается в А. главным образом водяным паром, углекислым газом, озоном и аэрозолями и рассеивается на частицах аэрозоля и на флуктуациях плотности А. Вследствие рассеяния лучистой энергии Солнца в А. наблюдается не только прямая солнечная, но и рассеянная радиация, в совокупности они составляют суммарную радиацию. Достигая земной поверхности, суммарная радиация частично отражается от неё. Величина отражённой радиации определяется отражательной способностью подстилающей поверхности, т. н. альбедо . За счёт поглощённой радиации земная поверхность нагревается и становится источником собственного длинноволнового излучения, направленного к А. В свою очередь, А. также излучает длинноволновую радиацию, направленную к земной поверхности (т. н. противоизлучение А.) ив мировое пространство (т. н. уходящее излучение). Рациональный теплообмен между земной поверхностью и А. определяется эффективным излучением - разностью между собственным излучением поверхности Земли и поглощённым ею противоизлучением А. Разность между коротковолновой радиацией, поглощённой земной поверхностью, и эффективным излучением называется радиационным балансом .

Преобразования энергии солнечной радиации после её поглощения на земной поверхности и в А. составляют тепловой баланс Земли. Главный источник тепла для атмосферы - земная поверхность, поглощающая основную долю солнечной радиации. Поскольку поглощение солнечной радиации в А. меньше потери тепла из А. в мировое пространство длинноволновым излучением, то радиационный расход тепла восполняется притоком тепла к А. от земной поверхности в форме турбулентного теплообмена и приходом тепла в результате конденсации водяного пара в А. Так как итоговая величина конденсации во всей А. равна количеству выпадающих осадков, а также величине испарения с земной поверхности, приход конденсационного тепла в А. численно равен затрате тепла на испарение на поверхности Земли (см. также Водный баланс).

Некоторая часть энергии солнечной радиации затрачивается на поддержание общей циркуляции А. и на другие атмосферные процессы, однако эта часть незначительна по сравнению с основными составляющими теплового баланса.

Движение воздуха

Вследствие большой подвижности атмосферного воздуха на всех высотах А. наблюдаются ветры. Движения воздуха зависят от многих факторов, из которых главный - неравномерность нагрева А. в разных районах земного шара.

Особенно большие контрасты температуры у поверхности Земли существуют между экватором и полюсами из-за различия прихода солнечной энергии на разных широтах. Наряду с этим на распределение температуры влияет расположение континентов и океанов. Из-за высоких теплоёмкости и теплопроводности океанических вод океаны значительно ослабляют колебания температуры, которые возникают в результате изменений прихода солнечной радиации в течение года . В связи с этим в умеренных и высоких широтах температура воздуха над океанами летом заметно ниже, чем над континентами, а зимой - выше.

Неравномерность нагревания атмосферы способствует развитию системы крупномасштабных воздушных течений - т. н. общей циркуляции атмосферы , которая создаёт горизонтальный перенос тепла в А., в результате чего различия в нагревании атмосферного воздуха в отдельных районах заметно сглаживаются. Наряду с этим общая циркуляция осуществляет влагооборот в А., в ходе которого водяной пар переносится с океанов на сушу и происходит увлажнение континентов. Движение воздуха в системе общей циркуляции тесно связано с распределением атмосферного давления и зависит также от вращения Земли (см. Кориолиса сила). На уровне моря распределение давления характеризуется его понижением у экватора, увеличением в субтропиках (пояса высокого давления) и понижением в умеренных и высоких широтах. При этом над материками внетропических широт давление зимой обычно повышено, а летом понижено.

С планетарным распределением давления связана сложная система воздушных течений, некоторые из них сравнительно устойчивы, а другие постоянно изменяются в пространстве и во времени. К устойчивым воздушным течениям относятся пассаты, которые направлены от субтропических широт обоих полушарий к экватору. Сравнительно устойчивы также муссоны - воздушные течения, возникающие между океаном и материком и имеющие сезонный характер. В умеренных широтах преобладают воздушные течения западных направления (с З. на В.). Эти течения включают крупные вихри - циклоны и антициклоны , обычно простирающиеся на сотни и тысячи км. Циклоны наблюдаются и в тропических широтах, где они отличаются меньшими размерами, но особенно большими скоростями ветра, часто достигающими силы урагана (т. н. тропические циклоны). В верхней тропосфере и нижней стратосфере встречаются сравнительно узкие (в сотни км шириной) струйные течения , имеющие резко очерченные границы, в пределах которых ветер достигает громадных скоростей - до 100-150 м/сек. Наблюдения показывают, что особенности атмосферные циркуляции в нижней части стратосферы определяются процессами в тропосфере.

В верхней половине стратосферы, где наблюдается рост температуры с высотой, скорость ветра возрастает с высотой, причём летом доминируют ветры восточных направлений, а зимой - западных. Циркуляция здесь определяется стратосферным источником тепла, существование которого связано с интенсивным поглощением озоном ультрафиолетовой солнечной радиации.

В нижней части мезосферы в умеренных широтах скорость зимнего западного переноса возрастает до максимальных значений - около 80 м/сек, а летнего восточного переноса - до 60 м/сек на уровне порядка 70 км. Исследования последних лет ясно показали, что особенности поля температуры в мезосфере нельзя объяснить только влиянием радиационных факторов. Главное значение имеют динамические факторы (в частности, разогревание или охлаждение при опускании или подъёме воздуха), а также возможны источники тепла, возникающие в результате фотохимических реакций (например, рекомбинации атомарного кислорода).

Над холодным слоем мезопаузы (в термосфере) температура воздуха начинает быстро возрастать с высотой. Во многих отношениях эта область А. подобна нижней половине стратосферы. Вероятно, циркуляция в нижней части термосферы определяется процессами в мезосфере, а динамика верхних слоев термосферы обусловлена поглощением здесь солнечной радиации. Однако исследовать атмосферного движения на этих высотах трудно вследствие их значительной сложности. Большое значение приобретают в термосфере приливные движения (главным образом солнечные полусуточные и суточные приливы), под влиянием которых скорость ветра на высотах более 80 км может достигать 100-120 м/сек. Характерная черта атмосферных приливов - их сильная изменчивость в зависимости от широты, времени года, высоты над уровнем моря и времени суток. В термосфере наблюдаются также значительные изменения скорости ветра с высотой (главным образом вблизи уровня 100 км), приписываемые влиянию гравитационных волн. Расположенная в диапазоне высот 100-110 км т. н. турбопауза резко отделяет находящуюся выше область от зоны интенсивного турбулентного перемешивания.

Наряду с воздушными течениями больших масштабов, в нижних слоях атмосферы наблюдаются многочисленные местные циркуляции воздуха (бриз , бора , горно-долинные ветры и др.; см. Ветры местные). Во всех воздушных течениях обычно отмечаются пульсации ветра, соответствующие перемещению воздушных вихрей средних и малых размеров. Такие пульсации связаны с турбулентностью атмосферы, которая существенно влияет на многие атмосферные процессы.

Климат и погода

Различия в количестве солнечной радиации, приходящей на разные широты земной поверхности, и сложность её строения, включая распределение океанов, континентов и крупнейших горных систем, определяют разнообразие климатов Земли (см. Климат).

Литература

  • Метеорология и гидрология за 50 лет Советской власти, под ред. Е. К. Федорова, Л., 1967;
  • Хргиан А. Х., Физика атмосферы, 2 изд., М., 1958;
  • Зверев А. С., Синоптическая метеорология и основы предвычисления погоды, Л., 1968;
  • Хромов С. П., Метеорология и климатология для географических факультетов, Л., 1964;
  • Тверской П. Н., Курс метеорологии, Л., 1962;
  • Матвеев Л. Т., Основы общей метеорологии. Физика атмосферы, Л., 1965;
  • Будыко М. И., Тепловой баланс земной поверхности, Л., 1956;
  • Кондратьев К. Я., Актинометрия , Л., 1965;
  • Хвостиков И. А., Высокие слои атмосферы, Л., 1964;
  • Мороз В. И., Физика планет, М., 1967;
  • Тверской П. Н., Атмосферное электричество, Л., 1949;
  • Шишкин Н. С., Облака, осадки и грозовое электричество, М., 1964;
  • Озон в земной атмосфере, под ред. Г. П. Гущина, Л., 1966;
  • Имянитов И. М., Чубарина Е. В., Электричество свободной атмосферы, Л., 1965.

М. И. Будыко, К. Я. Кондратьев.

Эта статья или раздел использует текст
Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png