Солнце , несмотря на то, что числится «желтым карликом» так велико, что нам даже сложно представить. Когда мы говорим, что масса Юпитера — это 318 масс Земли, это кажется невероятным. Но когда мы узнаем, что 99,8% массы всего вещества приходится на Солнце — это просто выходит за рамки понимания.

За прошедшие годы мы немало узнали о том как устроена «наша» звезда. Хотя человечество не изобрело (и вряд ли когда-то изобретет) исследовательский зонд, способный физически приблизиться к Солнцу и взять пробы его вещества, мы итак неплохо осведомлены об его составе.

Знание физики и возможности дают нам возможность точно сказать, из чего состоит Солнце: 70% от его массы составляет водород, 27% — гелий, другие элементы (углерод, кислород, азот, железо, магний и другие) — 2,5% .

Однако, только этой сухой статистикой наши знания, к счастью, не ограничиваются.

Что находится внутри Солнца

Согласно современным расчетам температура в недрах Солнца достигает 15 — 20 миллионам градусов Цельсия, плотность вещества звезды достигает 1,5 грамма на кубический сантиметр.

Источник энергии Солнца — постоянно идущая ядерная реакция, протекающая глубоко под поверхностью, благодаря которой и поддерживается высокая температуру светила. Глубоко под поверхностью Солнца водород превращается в гелий в следствии ядерной реакции с сопутствующим выделением энергии.
«Зона ядерного синтеза» Солнца называется солнечным ядром и имеет радиус примерно 150-175 тыс. км (до 25 % радиуса Солнца). Плотность вещества в солнечном ядре в 150 раз превышает плотность воды и почти в 7 раз — плотность самого плотного вещества на Земле: осмия.

Ученым известны два вида термоядерных реакций протекающих внутри звезд: водородный цикл и углеродный цикл . На Солнце преимущественно протекает водородный цикл , который можно разбить на три этапа:

  • ядра водорода превращаются в ядра дейтерия (изотоп водорода)
  • ядра водорода превращаются в ядра неустойчивого изотопа гелия
  • продукты первой и второй реакции связываются с образованием устойчивого изотопа гелия (Гелий-4).

Каждую секунду в излучение превращаются 4,26 миллиона тонн вещества звезды, однако по сравнению с весом Солнца, даже это невероятное значение так мало, что им можно пренебречь.

Выход тепла из недр Солнца совершается путем поглощения электромагнитного излучения, приходящего снизу и его дальнейшего переизлучения.

Ближе к поверхности солнца излучаемая из недр энергия переносится преимущественно в зоне конвекции Солнца с помощью процесса конвекции — перемешивании вещества (теплые потоки вещества поднимаются ближе к поверхности, холодные же опускаются).
Зона конвекции залегает на глубине около 10% солнечного диаметра и доходит почти до поверхности звезды.

Атмосфера Солнца

Выше зоны конвекции начинается атмосфера Солнца, в ней перенос энергии снова происходит с помощью излучения.

Фотосферой называют нижний слой солнечной атмосферы — видимую поверхность Солнца. Её толщина соответствует оптической толщине приблизительно в 2/3 единицы, а в абсолютных величинах фотосфера достигает толщины 100-400 км. Именно фотосфера является источником видимого излучения Солнца, температура составляет от 6600 К (в начале) до 4400 К (у верхнего края фотосферы).

На самом деле Солнце выглядит как идеальный круг с четкими границами только потому, что на границе фотосферы его яркость падает в 100 раз за менее чем одну секунду дуги. За счет этого края Солнечного диска заметно менее ярки нежели центр, их яркость всего 20% от яркости центра диска.

Хромосфера — второй атмосферный слой Солнца, внешняя оболочка звезды, толщиной около 2000 км, окружающая фотосферу. Температура хромосферы увеличивается с высотой от 4000 до 20 000 К. Наблюдая Солнце с Земли, мы не видим хромосферу из-за малой плотности. Её можно наблюдать только во время солнечных затмений — интенсивное красное свечение вокруг краев солнечного диска, это и есть хромосфера звезды.

Солнечная корона — последняя внешняя оболочка солнечной атмосферы. Корона состоит из протуберанцев и энергетических извержений, исходящих и извергающихся на несколько сотен тысяч и даже более миллиона километров в пространство, образуя солнечный ветер . Средняя корональная температура составляет до 2 млн К, но может доходить и до 20 млн К. Однако, как и в случае с хромосферой — с земли солнечная корона видна только во время затмений. Слишком малая плотность вещества солнечной короны не позволяет наблюдать её в обычных условиях.

Солнечный ветер

Солнечный ветер – поток заряженных частиц (протонов и электронов), испускаемых нагретыми внешними слоями атмосферы звезды, который простирается до границ нашей планетарной системы. Светило ежесекундно теряет миллионы тонн своей массы, из-за этого явления.

Около орбиты планеты Земля скорость частиц солнечного ветра достигает 400 километров в секунду (они перемещаются по нашей звездной системе со сверхзвуковой скоростью), а плотность солнечного ветра от нескольких до нескольких десятков ионизированных частиц в кубическом сантиметре.

Именно солнечный ветер нещадно «треплет» атмосферу планет, «выдувая» содержащиеся в ней газы в открытый космос, он же во многом ответственен за . Противостоять солнечному ветру Земле позволяет магнитное поле планеты, которое служит невидимой защитой от солнечного ветра и препятствует оттоку атомов атмосферы в открытый космос. При столкновении Солнечного ветра с магнитным полем планеты происходит оптическое явление, которое на Земле мы называем – полярное сияние , сопровождаемое магнитными бурями.

Впрочем, неоспорима и польза солнечного ветра — именно он «сдувает» из Солнечной системы и космическую радиацию галактического происхождения – а следовательно оберегает нашу звездную систему от внешних, галактических излучений.

Глядя на красоту полярных сияний, трудно поверить, что эти всполохи — видимый признак солнечного ветра и магнитосферы Земли

Светило, которому обязаны своим существованием и наша планета, и ее биосфера, и человеческая цивилизация, с точки зрения астрономов вполне банально.

Это рядовая желтая звезда весьма распространенного класса G2. Каждые 225–250 млн лет она совершает полный оборот по практически круговой орбите радиусом в 26 000 световых лет вокруг центра типичной крупной спиральной галактики с пассивным ядром, не излучающим мощных потоков энергии. Впрочем, именно в этой ординарности и состоит наше счастье. Звезды похолоднее и погорячее (и тем более близкие к активным галактическим центрам) гораздо меньше годятся на роль колыбели жизни, во всяком случае – углеродной

Алексей Левин

Согласно общепринятым оценкам, Солнце возникло 4,59 млрд лет назад. Правда, в последнее время некоторые астрономы заговорили о том, что его возраст составляет 6−7 млрд лет, но это пока лишь гипотезы. Разумеется, наше дневное светило родилось не на пустом месте. Его матерью было исполинское газопылевое облако, состоящее в основном из молекулярного водорода, которое под действием собственного тяготения медленно сжималось и деформировалось, пока не превратилось в плоский диск. Не исключено, что имел место и отец в лице космического события, которое увеличило гравитационную нестабильность облака и подхлестнуло его коллапс (таковым могла оказаться встреча с массивной звездой или же взрыв сверхновой). В центре диска возникла сфера из светящейся плазмы с температурой поверхности в несколько тысяч градусов, переводившая в тепло часть своей гравитационной энергии.

Новорожденное светило продолжало сжиматься, все больше разогревая свои недра. Через несколько миллионов лет их температура достигла 10 млн градусов Цельсия, и там начались самоподдерживающиеся реакции термоядерного синтеза. Юная протозвезда превратилась в нормальную звезду главной последовательности. Вещество ближней и дальней периферии диска сгустилось в холодные тела — планеты и планетоиды.


В настоящее время исследователи Солнца располагают чрезвычайно мощной техникой изучения конвективной зоны — гелиосейсмологией. «Это метод исследования Солнца с помощью анализа его осцилляций, вертикальных колебаний солнечной поверхности, типичные периоды которых составляют несколько минут, — поясняет старший научный сотрудник Стэнфордского университета Александр Косовичев. — Они были открыты еще в начале 1960-х годов. В частности, в этой области много сделали сотрудники Крымской астрофизической обсерватории во главе с академиком Северным. Осцилляции возбуждаются турбулентной конвекцией в приповерхностных слоях Солнца. В ходе этих процессов рождаются звуковые волны, которые распространяются внутри Солнца. Определяя характеристики этих волн, мы получаем информацию, которая позволяет сделать выводы о внутреннем строении Солнца и механизмах генерации магнитных полей. Гелиосейсмология уже позволила определить глубину конвективной зоны, выяснить характер вращения солнечных слоев, уточнить наши представления о возникновении солнечных пятен, которые фактически представляют собой сгустки магнитного поля. Теперь мы знаем, что солнечное динамо очень отличается от планетарного, поскольку работает в сильно турбулентной среде. Оно генерирует как глобальное дипольное поле, так и множество локальных полей. Механизмы взаимодействия между полями разных масштабов еще не известны, их только предстоит выяснить. В общем, у этой науки большое будущее».

Вот кое-какие паспортные данные Солнца. Возраст — 4,59 млрд лет; масса — 1,989х1030 кг; средний радиус — 696 000 км; средняя плотность — 1,409 г/см 3 (плотность земной материи в четыре раза выше); эффективная температура поверхности (вычисленная в предположении, что Солнце излучает как абсолютно черное тело) — 5503˚С (в пересчете на абсолютную температуру — 5778 кельвинов); суммарная мощность излучения — 3,83х1023 кВт.


Поверхность Солнца (фотосфера) даже в спокойном состоянии при наблюдении в телескоп (естественно, защищенный специальным фильтром) выглядит как набор зерен или пчелиные соты. Такая структура называется солнечной грануляцией. Она образуется благодаря конвекции, то есть тепловой циркуляции потоков газа — горячий газ «всплывает», а холодный — опускается вниз на границах гранул, которые видны как темные области. Типичный размер гранул — порядка 1000 км. На рисунке — инвертированное компьютерное изображение, рассчитанное с помощью эффекта Доплера — движение газовых потоков от наблюдателя изображено светлыми тонами, к наблюдателю — темными. Слева — составная картинка (сверху и против часовой стрелки): внутренняя структура Солнца с ядром и конвективной зоной; фотосфера с темным пятном; хромосфера; солнечная вспышка; вверху справа — протуберанец.

Поскольку Солнце вращается вокруг собственной оси не как единое целое, строго определенных суток оно не имеет. Поверхность его экваториальной зоны делает полный оборот за 27 земных суток, а приполярных зон — за 35 суток. Осевое вращение солнечных внутренностей еще сложнее и во всех деталях пока неизвестно.

В химическом составе солнечного вещества, естественно, доминируют водород (примерно 72% массы) и гелий (26%). Чуть меньше процента составляет кислород, 0,4% - углерод, около 0,1% - неон. Если выразить эти соотношения в количестве атомов, то получается, что на миллион атомов водорода приходится 98 000 атомов гелия, 850 атомов кислорода, 360 — углерода, 120 — неона, 110 — азота и по 40 атомов железа и кремния.

Солнечная механика

Слоистую структуру Солнца нередко сравнивают с луковицей. Эта аналогия не слишком удачна, поскольку сами слои пронизаны мощными вертикальными потоками вещества и энергии. Но в первом приближении она приемлема. Солнце светит за счет термоядерной энергии, которая генерируется в его ядре. Температура там достигает 15 млн градусов Цельсия, плотность — 160 г/см 3 , давление — 3,4х1011 атм. В этих адских условиях осуществляется несколько цепочек термоядерных реакций, составляющих протон-протонный цикл (p-p-цикл). Этим именем он обязан начальной реакции, где два протона, столкнувшись, порождают ядро дейтерия, позитрон и электронное нейтрино.


В ходе этих превращений (а их довольно много) сгорает водород и рождаются различные изотопы таких элементов Периодической системы, как гелий, бериллий, литий и бор. Три последних элемента вступают в ядерные реакции либо распадаются, а гелий остается — вернее, остается его основной изотоп гелий-4. В результате оказывается, что четыре протона дают начало одному ядру гелия, двум позитронам и двум нейтрино. Позитроны немедленно аннигилируют с электронами, а нейтрино покидают Солнце, практически не реагируя с его веществом. Каждая реакция p-p-цикла высвобождает 26,73 мегаэлектронвольта в форме кинетической энергии рожденных частиц и гамма-излучения.

Если бы протосолнечное облако состояло исключительно из элементов, возникших в ходе Большого взрыва (водорода и гелия-4 с очень малой примесью дейтерия, гелия-3 и лития-7), то этими реакциями все бы и закончилось. Однако композиция протосолнечного вещества была намного богаче, неоспоримым доказательством чему служит хотя бы наличие железа в солнечной атмосфере. Этот элемент, как и его ближайшие соседи в менделеевской таблице, рождается только в недрах гораздо более массивных светил, где температуры достигают миллиардов градусов. Солнце к ним не относится. Если железо там все-таки имеется, то лишь потому, что первичное облако уже было загрязнено и этим металлом, и еще многими другими элементами. Все они образовались в ядерных топках гигантских звезд прежних поколений, взорвавшихся сверхновыми и разбросавших продукты своей творческой деятельности по всему космическому пространству.

Это обстоятельство не сильно меняет вышеприведенную схему внутрисолнечного термоядерного синтеза, но все-таки привносит в нее кое-какие поправки. Дело в том, что при 15 млн градусов водород может превратиться в гелий и в углеродно-азотно-кислородном цикле (CNO-цикл). В его начале протон сталкивается с ядром углерода-12 и порождает ядро азота-13 и квант гамма-излучения. Азот распадается на ядро углерода-13, позитрон и нейтрино. Ядро тяжелого углерода опять-таки сталкивается с протоном, из чего происходят азот-14 плюс гамма-квант. Азот заглатывает третий протон с выделением гамма-кванта и кислорода-15, который трансформируется в азот-15, позитрон и нейтрино. Ядро азота захватывает последний, четвертый протон и раскалывается на ядра углерода-12 и гелия-4. Суммарный баланс такой же, как и в первом цикле: четыре протона в начале, альфа-частица (она же ядро гелия-4), пара позитронов и пара нейтрино в конце. Плюс, естественно, такой же выход энергии, без малого 27 МэВ. Что до углерода-12, то он в этом цикле вообще не расходуется, исчезает в первой реакции и снова появляется в последней. Это не топливо, а катализатор.


Солнце вращается вокруг своей оси, однако не как единое целое. На рисунке — компьютерная модель, составленная на основе данных доплеровского измерения скорости вращения отдельных участков Солнца, собранных космической обсерваторией SOHO (Solar Heliospheric Observatory). Цвет обозначает скорость вращения (в порядке убывания: красный, желтый, зеленый, синий). Участки горячей плазмы, перемещающиеся с различными скоростями, образуют «ленты», на границах которых возникают возмущения локальных магнитных полей, в результате чего именно здесь чаще всего и возникают солнечные пятна.

Реакции CNO-цикла внутри Солнца идут довольно вяло и обеспечивают лишь полтора процента общего выхода энергии. Однако забывать их не стоит хотя бы потому, что иначе расчетная мощность потока солнечных нейтрино будет заниженной. Загадки нейтринного излучения Солнца очень интересны, но это вполне самостоятельная тема, которая не укладывается в рамки данной статьи.

Ядро совсем молодого Солнца на 72% состояло из водорода. Модельные расчеты показали, что сейчас на его долю приходится лишь 35% массы центральной зоны ядра и 65% - периферийной. Ничего не поделаешь, выгорает даже ядерное топливо. Впрочем, его хватит еще миллиардов на пять лет. Процессы в термоядерной топке Солнца иногда сравнивают со взрывом водородной бомбы, но сходство здесь весьма условно. Десятки килограммов начинки мощных ядерных бомб имеют мощность в мегатонны и десятки мегатонн тротилового эквивалента. А вот солнечное ядро при всей его гигантской массе вырабатывает всего около ста миллиардов мегатонн в секунду. Нетрудно сосчитать, что средняя мощность энерговыделения составляет шесть микроватт на килограмм — человеческое тело производит тепло в 200 000 раз активней. Солнечный термояд не «взрывается», а медленно-медленно «тлеет» — к великому нашему счастью.


Лучистый перенос

Внешняя граница ядра находится приблизительно в 150 000 км от центра Солнца (0,2 радиуса). В этой зоне температура снижается до 9 млн градусов. При последующем охлаждении реакции протон-протонного цикла прекращаются — у протонов недостает кинетической энергии для преодоления электростатического отталкивания и слияния в ядро дейтерия. Реакции CNO-цикла там тоже не идут, поскольку их температурный порог даже выше. Поэтому на границе ядра солнечный термояд сходит на нет.


Трехмерная модель солнечного пятна, построенная на основе данных, полученных с помощью одного из инструментов (Michelson Doppler Imager) космической обсерватории SOHO (Solar and Heliospheric Observatory). Верхняя плоскость — это поверхность Солнца, нижняя плоскость проходит на глубине 22 тысячи километров. Вертикальная плоскость сечения продолжена до 24 тысяч километров. Цветами обозначены области с различной скоростью звука (по мере убывания — от красной к синей и черной). Сами пятна — это места выхода в солнечную атмосферу сильных магнитных полей. Они видны как участки с пониженной температурой на поверхности Солнца, обычно они окружены более горячими активными областями — факелами. Количество пятен на Солнце изменяется с периодом в 11 лет (чем их больше — тем больше активность Солнца).

Ядро окружено мощным сферическим слоем, который заканчивается на вертикальной отметке в 0,7 солнечного радиуса. Это лучистая зона (англ. radiative zone). Она заполнена водородно-гелиевой плазмой, плотность которой по мере движения от внутренней границы зоны к внешней сокращается в сотню раз, от 20 до 0,2 г/см 3 . Хотя внешние плазменные слои холоднее внутренних, температурный градиент там не настолько велик, чтобы возникли вертикальные потоки вещества, уносящие тепло от нижних слоев к верхним (такой механизм теплопереноса называется конвекцией). В надъядерном слое никакой конвекции нет и быть не может. Выделяемая в ядре энергия проходит сквозь него в виде квантов электромагнитного излучения.

Как это происходит? Рожденные в центре ядра гамма-кванты рассеиваются в его веществе, постепенно теряя энергию. До границы ядра они добираются в виде мягкого рентгена (длина волны порядка одного нанометра и энергия 400−1300 эВ). Тамошняя плазма для них почти непрозрачна, фотоны могут преодолеть в ней расстояние всего лишь в доли сантиметра. При столкновении с ионами водорода и гелия кванты отдают им свою энергию, которая частично уходит на поддержание кинетической энергии частиц на прежнем уровне, а частично переизлучается в виде новых квантов большей длины. Так что фотоны постепенно диффундируют через плазму, погибая и рождаясь вновь. Блуждающие кванты легче уходят вверх (где вещество менее плотно), нежели вниз, и поэтому лучистая энергия перетекает из глубин зоны к ее внешней границе.

Поскольку в зоне лучистого переноса вещество неподвижно, она вращается вокруг солнечной оси как единое целое. Но лишь до поры до времени. Во время перемещения к поверхности Солнца фотоны проходят все более длинные дистанции между столкновениями с ионами. Это означает, что разница в кинетической энергии излучающих и поглощающих частиц все время возрастает, ведь солнечная материя на бóльших глубинах горячее, чем на меньших. В результате плазма дестабилизируется и в ней возникают условия для физического перемещения вещества. Зона лучистого переноса переходит в конвективную зону.


Фотография солнечной короны, сделанная во время полного солнечного затмения 26 февраля 1998 года. Корона — это внешняя часть солнечной атмосферы, состоящая из разреженного водорода, разогретого до температуры порядка миллиона градусов Цельсия. Цвета на снимке — синтетические, и обозначают уменьшающуюся яркость короны по мере удаления от Солнца (синее с розовым пятно в центре — это Луна).

Зона конвекции

Она начинается на глубине в 0,3 радиуса и простирается вплоть до поверхности Солнца (вернее, его атмосферы). Ее подошва нагрета до 2 млн градусов, в то время как температура внешней границы не достигает и 6000˚С. От лучевой зоны ее отделяет тонкий промежуточный слой — тахоклин. В нем происходят интереснейшие, но пока не слишком изученные вещи. Во всяком случае есть основания считать, что движущиеся в тахоклине потоки плазмы вносят основной вклад в формирование солнечного магнитного поля. Нетрудно вычислить, что зона конвекции занимает около двух третей объема Солнца. Однако масса ее очень невелика — всего два процента солнечной. Это и естественно, ведь солнечное вещество по мере удаления от центра неотвратимо разрежается. У нижней границы зоны плотность плазмы равна 0,2 плотности воды, а при выходе в атмосферу она уменьшается до 0,0001 плотности земного воздуха над уровнем моря.

Вещество в конвективной зоне перемещается весьма запутанным образом. От ее подошвы восходят мощные, но медленные потоки горячей плазмы (поперечником в сотню тысяч километров), скорость которых не превышает нескольких сантиметров в секунду. Навстречу им опускаются не столь могучие струи менее нагретой плазмы, скорость которых измеряется уже метрами в секунду. На глубине в несколько тысяч километров восходящая высокотемпературная плазма разделяется на гигантские ячейки. Наиболее крупные из них имеют линейные размеры порядка 30−35 тысяч километров — их называют супергранулами. Ближе к поверхности образуются мезогранулы с характерным размером в 5000 км, а еще ближе — в 3−4 раза меньшие гранулы. Супергранулы живут около суток, гранулы — обычно не более четверти часа. Когда эти продукты коллективного движения плазмы добираются до солнечной поверхности, их легко увидеть в телескоп со специальным фильтром.


Атмосфера

Она устроена довольно сложно. Весь солнечный свет уходит в космос с ее нижнего уровня, который называют фотосферой. Основным источником света служит нижний слой фотосферы толщиной в 150 км. Толщина всей фотосферы составляет около 500 км. Вдоль этой вертикали температура плазмы снижается от 6400 до 4400 К.

В фотосфере постоянно возникают области пониженной (до 3700 К) температуры, которые светятся слабее и обнаруживаются в виде темных пятен. Количество солнечных пятен изменяется с периодом в 11 лет, но они никогда не покрывают больше 0,5% площади солнечного диска.

Над фотосферой расположен хромосферный слой, а еще выше — солнечная корона. О существовании короны известно с незапамятных времен, поскольку она превосходно видна во время полных солнечных затмений. Хромосферу же открыли сравнительно недавно, лишь в середине XIX века. 18 июля 1851 года сотни астрономов, собравшихся в Скандинавии и окрестных странах, наблюдали, как Луна закрывает солнечный диск. За несколько секунд до появления короны и перед самым концом полной фазы затмения ученые заметили у края диска светящийся красный полумесяц. Во время затмения 1860 года удалось не только лучше рассмотреть такие вспышки, но и получить их спектрограммы. Спустя девять лет английский астроном Норман Локьер назвал эту зону хромосферой.

Плотность хромосферы крайне мала даже по сравнению с фотосферой, всего 10−100 млрд частиц на 1 см³. Зато нагрета она сильнее — до 20 000˚С. В хромосфере постоянно наблюдаются темные вытянутые структуры — хромосферные волокна (их разновидность — всем известные протуберанцы). Они представляют собой сгустки более плотной и холодной плазмы, поднятой из фотосферы петлями магнитного поля. Видны и участки повышенной яркости — флоккулы. И наконец, в хромосфере постоянно появляются и через несколько минут исчезают продолговатые плазменные структуры — спикулы. Это своего рода путепроводы, по которым материя перетекает из фотосферы в корону.


От процессов в солнечных недрах непосредственно зависит грядущая судьба нашего светила. По мере уменьшения запасов водорода ядро постепенно сжимается и разогревается, что увеличивает светимость Солнца. С момента превращения в звезду главной последовательности она уже выросла на 25−30% - и этот процесс будет продолжаться. Примерно через 5 млрд лет температура ядра достигнет сотни миллионов градусов, и тогда в его центре загорится гелий (с образованием углерода и кислорода). На периферии в это время будет дожигаться водород, причем зона его сгорания несколько сдвинется по направлению к поверхности. Солнце потеряет гидростатическую устойчивость, его внешние слои сильно раздуются, и оно превратится в исполинское, но не особенно яркое светило — красный гигант. Светимость этого исполина на два порядка превысит нынешнюю светимость Солнца, но его жизненный срок будет много короче. В центре его ядра быстро накопится большое количество углерода и кислорода, которые вспыхнуть уже не смогут — не хватит температуры. Внешний гелиевый слой будет продолжать гореть, постепенно расширяясь и в силу этого охлаждаясь. Скорость термоядерного сгорания гелия чрезвычайно быстро растет с повышением температуры и падает с ее снижением. Поэтому внутренности красного гиганта начнут сильно пульсировать, и в конце концов дело может дойти до того, что его атмосфера окажется выброшенной в окружающий космос со скоростью в десятки километров в секунду. Сначала разлетающаяся звездная оболочка под действием ионизирующего ультрафиолетового излучения нижележащих звездных слоев ярко засияет голубым и зеленым светом - на этой стадии она называется планетарной туманностью. Но уже через тысячи или, в максимуме, десятки тысяч лет туманность остынет, потемнеет и рассеется в пространстве. Что касается ядра, то там превращение элементов прекратится вовсе, и оно будет светить лишь за счет накопленной тепловой энергии, все больше и больше остывая и угасая. Сжаться в нейтронную звезду или черную дыру оно не сможет, не хватит массы. Такие холодеющие остатки почивших в бозе звезд солнечного типа называют белыми карликами.

Корона — самая горячая часть атмосферы, ее температура достигает нескольких миллионов градусов. Этот нагрев можно объяснить с помощью нескольких моделей, базирующихся на принципах магнитной гидродинамики. К сожалению, все эти процессы очень сложны и изучены весьма слабо. Корона также насыщена разнообразными структурами — дырами, петлями, стримерами.


Солнечные проблемы

Несмотря на то что Солнце — это самый крупный и самый заметный объект земного неба, нерешенных проблем в физике нашего светила хватает. «Мы знаем, что магнетизм Солнца чрезвычайно сильно влияет на динамику его атмосферы — к примеру, порождает солнечные пятна. Но как он возникает и как распространяется в плазме, еще не выяснено, — отвечает на вопрос «ПМ» директор американской Национальной солнечной обсерватории Стивен Кейл. — На второе место я бы поставил расшифровку механизма возникновения солнечных вспышек. Это кратковременные, но крайне мощные выбросы быстрых электронов и протонов, сочетающиеся с генерацией столь же мощных потоков электромагнитного излучения самых разных длин волн. О вспышках собрана обширная информация, однако разумных моделей их возникновения пока нет. Наконец, надо бы понять, какими способами фотосфера подпитывает энергией корону и разогревает ее до температур, которые на три порядка превышают ее собственную температуру. А для этого прежде всего необходимо как следует определить параметры магнитных полей внутри короны, поскольку эти величины известны далеко не в полной мере».

Температура поверхности Солнца определяется путем анализа солнечного спектра. Известно, что является источником энергии всех природных процессов на Земле поэтому ученые определили количественную величину нагретости различных частей нашей звезды.

Интенсивность излучения в отдельных цветовых частях спектра соответствует температуре 6000 градусов. Такова температура поверхности Солнца или фотосферы.

Во внешних слоях солнечной атмосферы – в хромосфере и в короне - наблюдается более высокая температура. В короне она составляет примерно от одного до двух миллионов градусов. Над местами сильных вспышек температура на короткое время может достигать даже пятидесяти миллионов. Из-за высокой нагретости в короне над вспышкой сильно возрастает интенсивность рентгеновского и радиоизлучений.

Расчеты нагретости нашей звезды

Важнейшим процессом, протекающим на Солнце, является превращение водорода в гелий. Именно этот процесс является источником всей энергии Солнца.
Солнечное ядро отличается большой плотностью и очень высокой температурой. Часто имеют место резкие столкновения электронов, протонов и других ядер. Иногда столкновения протонов настолько стремительны, что они, преодолев силу электрического отталкивания, приближаются друг к другу на расстояние своего диаметра. На таком расстоянии начинает действовать ядерная сила, вследствие которой протоны соединяются с выделением энергии.

Четыре протона постепенно соединяются в ядро гелия, причем два протона превращаются в нейтроны, два положительных заряда освобождаются в виде позитронов и появляются две незаметные нейтральные частицы – нейтрино. При встрече с электронами оба позитрона превращаются в фотоны гамма-излучения (аннигиляция).

Энергия покоя атома гелия меньше энергии покоя четырех атомов водорода.

Разница в массах превращается в гамма-фотоны и нейтрино. Общая энергия всех возникших гамма-фотонов и двух нейтрино составляет 28 МэВ. Ученые смогли получить излучение фотонов .
Именно такое количество энергии Солнце излучает за одну секунду. Величина эта представляет собой мощность солнечного излучения.

> Из чего состоит Солнце

Узнайте, из чего состоит Солнце : описание структуры и состава звезды, перечисление химических элементов, количество и характеристика слоев с фото, диаграмма.

С Земли, Солнце выглядит как гладкий огненный шар, и до открытия комическим кораблём Galileo пятен на Солнце, многие астрономы считали, что оно идеальной формы без дефектов. Теперь мы знаем, что Солнце состоит из нескольких слоёв, как и Земля, каждый из которых выполняет свою функцию. Эта структура Солнца, похожая на массивную печь, является поставщиком всей энергии на Земле, необходимой для земной жизни.

Из каких элементов состоит Солнце?

Если бы у вас получилось разложить звезду на части, и сравнить составные элементы, вы бы поняли, что состав представляет собою 74% водорода и 24% гелия. Также, Солнце состоит из 1% кислорода, и оставшийся 1% - это такие химические элементы таблицы Менделеева, как хром, кальций, неон, углерод, магний, сера, кремний, никель, железо. Астрономы полагают, что элемент тяжелее гелия – это металл.

Как появились все эти элементы Солнца? В результате Большого Взрыва появились водород и гелий. В начале становления Вселенной, первый элемент, водород, появился из элементарных частиц. Из-за большой температуры и давления условия во Вселенной были как в ядре звезды. Позже, водород синтезировался в гелий, пока во Вселенной была высокая температура, необходимая для протекания реакции синтеза. Существующие пропорции водорода и гелия, которые есть во Вселенной сейчас, сложились после Большого Взрыва и не изменялись.

Остальные элементы Солнца созданы в других звездах. В ядрах звезд постоянно происходит процесс синтеза водорода в гелий. После выработки всего кислорода в ядре, они переходят на ядерный синтез более тяжелых элементов, таких как литий, кислород, гелий. Многие тяжелые металлы, которые есть в Солнце, образовывались и в других звездах в конце их жизни.

Образование самых тяжелых элементов, золота и урана, происходило, когда звезды, во много раз больше нашего Солнца, детонировали. За доли секунды образования черной дыры, элементы сталкивались на большой скорости и образовывались самые тяжелые элементы. Взрыв раскидал эти элементы по всей Вселенной, где они помогли образоваться новым звездам.

Наше Солнце собрало в себя элементы, созданные Большим Взрывом, элементы от умирающих звезд и частицы появившихся в результате новых детонаций звезд.

Из каких слоев состоит Солнце

На первый взгляд, Солнце - просто шар, состоящий из гелия и водорода, но при более глубоком изучении видно, что оно состоит из разных слоев. При движении к ядру, температура и давление увеличиваются, в результате этого были созданы слои, так как при различных условиях водород и гелий имеют разные характеристики.

Солнечное ядро

Начнем наше движение по слоям от ядра к наружному слою состава Солнца. Во внутреннем слое Солнца – ядре, температура и давление очень высокие, способствующие для протекания ядерного синтеза. Солнце создает из водорода атомы гелия, в результате этой реакции образуется свет и тепло, которые доходят до . Принято считать, что температура на Солнце около 13,600,000 градусов по Кельвину, а плотность ядра в 150 раз выше плотности воды.

Ученые и астрономы считают, что ядро Солнца достигает около 20% длины солнечного радиуса. И внутри ядра, высокая температура и давление способствуют разрыву атомов водорода на протоны, нейтроны и электроны. Солнце преобразовывает их в атомы гелия, не смотря на их свободно плавающее состояние.

Такая реакция называется экзотермической. При протекании этой реакции выделяется большое количество тепла, равное 389 х 10 31 дж. в секунду.

Радиационная зона Солнца

Эта зона берет свое начало у границы ядра (20% солнечного радиуса), и достигает длины до 70% радиуса Солнца. Внутри этой зоны находится солнечное вещество, которое по своему составу достаточно плотное и горячее, поэтому тепловое излучение проходит через него, не теряя тепло.

Внутри солнечного ядра протекает реакция ядерного синтеза – создание атомов гелия в результате слияния протонов. В результате этой реакции происходит большое количество гамма-излучения. В данном процессе испускаются фотоны энергии, затем поглощаются в радиационной зоне и испускаются различными частицами вновь.

Траекторию движения фотона принято называть «случайным блужданием». Вместо движения по прямой траектории к поверхности Солнца, фотон движется зигзагообразно. В итоге, каждому фотону необходимо примерно 200.000 лет для преодоления радиационной зоны Солнца. При переходе от одной частицы к другой частице происходит потеря энергии фотоном. Для Земли это хорошо, ведь мы бы могли получать лишь гамма-излучение, идущее от Солнца. Фотону, попавшему в космос необходимо 8 минут для путешествия к Земле.

Большое количество звезд имеют радиационные зоны, и их размеры напрямую зависит от масштаба звезды. Чем меньше звезда, тем меньше будут зоны, большую часть которой будет занимать конвективная зона. У самых маленьких звезд могут отсутствовать радиационные зоны, а конвективная зона будет достигать расстояние до ядра. У самых больших звезд ситуация противоположная, радиационная зона простирается до поверхности.

Конвективная зона

Конвективная зона находится снаружи радиационной зоны, где внутреннее тепло Солнца перетекает по столбам горячего газа.

Почти все звезды имеют такую зону. У нашего Солнца она простирается от 70% радиуса Солнца до поверхности (фотосферы). Газ в глубине звезды, у самого ядра, нагреваясь, поднимается на поверхность, как пузырьки воска в лампадке. При достижении поверхности звезды, происходит потеря тепла, при охлаждении газ обратно погружается к центру, за возобновлением тепловой энергии. Как пример, можно привезти, кастрюля с кипящей водой на огне.

Поверхность Солнца похожа на рыхлую почву. Эти неровности и есть столбы горячего газа, несущие тепло к поверхности Солнца. Их ширина достигает 1000 км, а время рассеивания достигает 8-20 минут.

Астрономы считают, что звезды маленькой массы, такие как красные карлики, имеющие только конвективную зону, которая простирается до ядра. У них отсутствует радиационная зона, что нельзя сказать о Солнце.

Фотосфера

Единственный видимый с Земли слой Солнца – . Ниже этого слоя, Солнце становится непрозрачным, и астрономы используют другие методы для изучения внутренней части нашей звезды. Температуры поверхности достигает 6000 Кельвин, светится желто-белым цветом, видимым с Земли.

Атмосфера Солнца находится за фотосферой. Та часть Солнца, которая видна во время солнечного затмения, называется .

Строение Солнца в диаграмме

NASA специально разработало для образовательных потребностей схематическое изображение строения и состава Солнца с указанием температуры для каждого слоя:

  • (Visible, IR and UV radiation) – это видимое излучение, инфракрасное излучение и ультрафиолетовое излучение. Видимое излучение – это свет, которые мы видим приходящим от Солнца. Инфракрасное излучение – это тепло, которое мы ощущаем. Ультрафиолетовое излучение – это излучение, дающее нам загар. Солнце производит эти излучения одновременно.
  • (Photosphere 6000 K) – Фотосфера – это верхний слой Солнца, поверхность его. Температура 6000 Кельвин равна 5700 градусов Цельсия.
  • Radio emissions (пер. Радио эмиссия) – Помимо видимого излучения, инфракрасного излучения и ультрафиолетового излучения, Солнце отправляет радио эмиссию, которую астрономы обнаружили с помощью радиотелескопа. В зависимости от количества пятен на Солнце, эта эмиссия возрастает и снижается.
  • Coronal Hole (пер. Корональная дыра) – Это места на Солнце, где корона имеет небольшую плотность плазмы, в результате она темнее и холоднее.
  • 2100000 К (2100000 Кельвин) – Радиационная зона Солнца имеет такую температуру.
  • Convective zone/Turbulent convection (пер. Конвективная зона/Турбулентная конвекция) – Это места на Солнце, где тепловая энергия ядра передается с помощью конвекции. Столбы плазмы доходят до поверхности, отдают своё тепло, и вновь устремляются вниз, чтоб вновь нагреться.
  • Coronal loops (пер. Корональные петли) – петли, состоящие из плазмы, в атмосфере Солнца, движущиеся по магнитным линиям. Они похожи на огромные арки, простирающиеся от поверхности на десятки тысяч километров.
  • Core (пер. Ядро) – это солнечное сердце, в котором происходит ядерный синтез, при помощи высокой температуры и давления. Вся солнечная энергия происходит из ядра.
  • 14,500,000 К (пер. 14,500,000 Кельвин) – Температура солнечного ядра.
  • Radiative Zone (пер. Радиационная зона) – Слой Солнца, где энергия передается при помощи радиации. Фотон преодолевает радиационную зону за 200.000 и выходит в открытый космос.
  • Neutrinos (пер. Нейтрино) – это ничтожно маленькие по массе частицы, исходящие из Солнца в результате реакции ядерного синтеза. Сотни тысяч нейтрино проходят через тело человека ежесекундно, но никакого вреда нам не приносят, мы их не чувствуем.
  • Chromospheric Flare (пер. Хромосферная вспышка) – Магнитное поле нашей звезды может закручиваться, а потом резко разрывается в различных формах. В результате разрывов магнитных полей появляются мощные рентгеновские вспышки, исходящие из поверхности Солнца.
  • Magnetic Field Loop (пер. Петля магнитного поля) – Магнитное поле Солнца находится над фотосферой, и видно, так как раскаленная плазма движется по магнитным линиям в атмосфере Солнца.
  • Spot– A sunspot (пер. Солнечные пятна) – Это места на поверхности Солнца, где магнитные поля проходят через поверхность Солнца, и на них температура ниже, часто в виде петли.
  • Energetic particles (пер. Энергичные частицы) – Они исходят из поверхности Солнца, в результате создается солнечный ветер. В солнечных бурях их скорость достигает скорости света.
  • X-rays (пер. Рентгеновские лучи) – невидимые для глаза человека лучи, образующиеся во вспышек на Солнце.
  • Bright spots and short-lived magnetic regions (пер. Яркие пятна и недолгие магнитные регионы) – Из-за перепада температур на поверхности Солнца появляются яркие и тусклые пятна.

Температура в недрах Солнца

Определение свойств поверхности Солнца было огромным достижением - па первый взгляд оно вообще казалось невозможным. Так насколько же труднее, скажете вы, должно быть изучение недр Солнца!

Однако некоторые выводы о недрах Солнца сделать довольно легко. Например, мы знаем, что поверхность Солнца постоянно излучает в пространство огромное количество тепла, и тем не менее ее температура не меняется Совершенно очевидно, что это тепло должно поступать изнутри с той же скоростью, с какой оно излучается в пространство, а отсюда следует, что недра Солнца должны быть более горячими, чем его поверхность.

Поскольку поверхность Солнца уже настолько горяча. что па пей превращаются в пар любые известные вещества, и поскольку внутренние области Солнца еще горячее, напрашивается вывод, что все Солнце газообразно, что это просто шар сверхраскаленного газа. Если это так, то можно считать, что астрономам очень повезло, ибо свойства газа установить легче, чем свойства жидкостей и твердых тел.

В 20-х годах XX в. вопросом о внутреннем строении Солнца занялся английский астроном Артур Стенли Эддингтон (1882-1944), исходивший из предположения, что звезды представляют собой газовые шары.

Эддингтон рассуждал так раз Солнце - всего лишь газовый шар, то, если бы на него воздействовала только сила его собственного тяготения, оно стремительно сжалось бы. А поскольку этого не происходит, значит, силу тяготения уравновешивает какая-то другая сила, действие которой направлено изнутри наружу. Такая направленная наружу сила могла возникнуть благодаря стремлению газов расширяться под действием высокой температуры.

Исходя из значений массы Солнца и силы его тяготения, Эддингтон в 1926 г. рассчитал, какие температуры необходимы для того, чтобы уравновешивать силу тяготения на различной глубине под поверхностью Солнца. Он получил потрясающие цифры. Температура в центре Солнца должна была достигать гигантской величины в 15 000 000°С (Согласно современным расчетам она еще выше: 21 000 000°С!)

Несмотря на всю поразительность этих результатов, большинство астрономов согласилось с ними Во-первых, такие температуры были необходимы для того, чтобы могло происходить слияние атомов водорода Хотя поверхность Солнца намного холоднее, чем требуется для этой реакции, внутренние области, согласно расчетам Эддингтона, оказались, безусловно, достаточно горячими для нее

Во-вторых, рассуждения Эддингтона помогали объяснить и некоторые другие явления. Солнце находилось в состоянии чуткого равновесия между силой тяготения, обращенной внутрь, и действием температуры, направленным наружу. А что, если такое состояние равновесия свойственно не всем звездам?

Предположим, что какая то звезда не настолько горяча, чтобы противостоять сжатию под действием силы тяготения Подобная звезда сжалась бы, и при этом энергия тяготения (как указывал еще Гельмгольц) превратилась бы в тепловую энергию. Внутренняя температура повысилась бы, силы расширения возросли бы и в конце концов уравновесили бы давление, создаваемое силой тяготения. Однако звезда по инерции продолжала бы сжиматься и дальше - но все медленнее и медленнее. К тому времени, когда сжатие, наконец, прекратилось бы, температура уже была бы намного выше той, которая требовалась для уравновешивания силы тяготения, и звезда начала бы расширяться. По мере ее расширения температура понижалась бы и вскоре вновь достигла бы точки равновесия Однако из-за инерции процесс расширения не остановился бы на этой точке - он постепенно замедлился бы, потом прекратился, и звезда вновь начала бы сжиматься. Этот цикл повторялся бы снова и снова - бесконечно.

Такая звезда пульсировала бы около какого-то положения равновесия подобно качающемуся маятнику или подпрыгивающей пружине Блеск такой звезды, естественно, регулярно менялся бы, и характер его изменений (при ее размерах и температуре) точно совпал бы с поведением цефеид

После того как все астрономы пришли к согласию относительно температуры и давления во внутренних областях Солнца, оставалось выяснить процессы, позволявшие водороду при этих условиях превращаться в гелий со скоростью, которая была бы достаточна для объяснения общего количества солнечного излучения. В 1939 г. американский физик, немец по происхождению, Ганс Альбрехт Бете (род. в 1906 г.) сумел разработать подходящий цикл ядерных реакций. Скорость их протекания в условиях, царящих внутри Солнца (согласно теоретическим расчетам и экспериментальным данным, полученным в земных лабораториях), вполне отвечала этим требованиям

Таким образом, вопрос об источнике солнечной энергии, поставленный Гельмгольцем в 40-х годах XIX в, Бете окончательно разрешил почти 100 лет спустя.

А вместе с этим была также установлена возможная длительность жизни Солнца 100 миллиардов лет.

Однако поиски данных, подтверждавших наличие сверхвысокой температуры внутри Солнца, имели и неожиданное побочное следствие была опровергнута планетезимальная гипотеза происхождения солнечной системы.

Рис. 22. Гипотеза Вайцзеккера


Полагать, что от Солнца отделилась какая-то часть его вещества, которое затем сгустилось в планеты, можно было до тех пор, пока температура солнечного вещества оценивалась в несколько тысяч градусов. Но температура в несколько миллионов градусов - это совсем иное дело!

В 1939 г. американский астроном Лаймен Спитцер младший (род. в 1914 г.) убедительно доказал, что подобное сверхгорячее вещество не могло бы сгуститься в планеты, а, наоборот, быстро расширилось бы в газовую туманность, окружающую Солнце, и осталось бы туманностью.

Поэтому астрономам вновь пришлось вернуться к разрешению проблемы образования планет из относительно холодного вещества. Им снова пришлось думать о сжимающихся туманностях старого лапласовского типа. Однако в XX в уже было известно очень многое о том, как должна была бы вести себя такая туманность, и об электрических и магнитных силах, воздействию которых она подвергалась бы наряду с воздействием сил тяготения.

В 1943 г. немецкий астроном Карл Фридрих Вайцзеккер (род в 1912 г.) высказал предположение, что туманность, из которой возникла солнечная система, не вращалась как единое целое. Наоборот, в ее наружных слоях, по его мнению, должны были образоваться вихревые движения с меньшими вихрями внутри больших. Там, где встречались бы соседние вихри, происходило бы столкновение частиц, слияние их во все более крупные частицы, и впоследствии там сформировались бы планеты. Таким способом Вайцзеккер пытался ответить на те вопросы, па которые пробовал ответить Лаплас, а сверх того, еще и объяснить закономерность в расположении планетных орбит, распределение момента количества движения и т. д.

Теория Вайцзеккера была встречена восторженно, но ее частности вызвали большие споры. Они еще продолжаются, и многие астрономы выдвинули свои собственные версии, но ни одна из них еще не получила всеобщего признания Впрочем, английский астроном Фред Хойл (род. в 1915 г.) недавно предложил механизм образования планет, связанный с магнитным полем Солнца, и эта теория завоевала немалую популярность.

Как бы то ни было, астрономы единодушно сходятся на том, что вся солнечная система - и Солнце и планеты - образовалась в результате одного общего процесса Другими словами, если Земля в ее нынешней форме существует 4,7 миллиарда лет, то мы можем считать, что и вся солнечная система (включая Солнце) в ее нынешней форме существует 4,7 миллиарда лет .

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png