В клетке любого живого организма протекают миллионы химических реакций. Каждая из них имеет большое значение, поэтому важно поддерживать скорость биологических процессов на высоком уровне. Почти каждая реакция катализируется своим ферментом. Что такое ферменты? Какова их роль в клетке?

Ферменты. Определение

Термин "фермент" происходит от латинского fermentum - закваска. Также они могут называться энзимами от греческого en zyme - "в дрожжах".

Ферменты - биологически активные вещества, поэтому любая реакция, протекающая в клетке, не обходится без их участия. Эти вещества выполняют роль катализаторов. Соответственно, любой фермент обладает двумя основными свойствами:

1) Энзим ускоряет биохимическую реакцию, но при этом не расходуется.

2) Величина константы равновесия не меняется, а лишь ускоряется достижение этого значения.

Ферменты ускоряют биохимические реакции в тысячу, а в некоторых случаях в миллион раз. Это значит, что при отсутствии ферментативного аппарата все внутриклеточные процессы практически остановятся, а сама клетка погибнет. Поэтому роль ферментов как биологически активных веществ велика.

Разнообразие энзимов позволяет разносторонне регулировать метаболизм клетки. В любом каскаде реакций принимает участие множество ферментов различных классов. Биологические катализаторы обладают большой избирательностью благодаря определенной конформации молекулы. Т. к. энзимы в большинстве случаев имеют белковую природу, они находятся в третичной или четвертичной структуре. Объясняется это опять же специфичностью молекулы.

Функции энзимов в клетке

Главная задача фермента - ускорение соответствующей реакции. Любой каскад процессов, начиная с разложения пероксида водорода и заканчивая гликолизом, требует присутствия биологического катализатора.

Правильная работа ферментов достигается высокой специфичностью к определенному субстрату. Это значит, что катализатор может ускорять только определенную реакцию и никакую больше, даже очень похожую. По степени специфичности выделяют следующие группы энзимов:

1) Ферменты с абсолютной специфичностью, когда катализируется только одна-единственная реакция. Например, коллагеназа расщепляет коллаген, а мальтаза расщепляет мальтозу.

2) Ферменты с относительной специфичностью. Сюда входят такие вещества, которые могут катализировать определенный класс реакций, к примеру, гидролитическое расщепление.

Работа биокатализатора начинается с момента присоединения его активного центра к субстрату. При этом говорят о комплементарном взаимодействии наподобие замка и ключа. Здесь имеется в виду полное совпадение формы активного центра с субстратом, что дает возможность ускорять реакцию.

Следующий этап заключается в протекании самой реакции. Ее скорость возрастает благодаря действию ферментативного комплекса. В конечном итоге мы получаем энзим, который связан с продуктами реакции.

Заключительный этап - отсоединение продуктов реакции от фермента, после чего активный центр вновь становится свободным для очередной работы.

Схематично работу фермента на каждом этапе можно записать так:

1) S + E ——> SE

2) SE ——> SP

3) SP ——> S + P , где S - это субстрат, E - фермент, а P - продукт.

Классификация ферментов

В организме человека можно найти огромное количество ферментов. Все знания об их функциях и работе были систематизированы, и в итоге появилась единая классификация, благодаря которой можно легко определить, для чего предназначен тот или иной катализатор. Здесь представлены 6 основных классов энзимов, а также примеры некоторых подгрупп.

  1. Оксидоредуктазы.

Ферменты этого класса катализируют окислительно-восстановительные реакции. Всего выделяют 17 подгрупп. Оксидоредуктазы обычно имеют небелковую часть, представленную витамином или гемом.

Среди оксидоредуктаз часто встречаются следующие подгруппы:

а) Дегидрогеназы. Биохимия ферментов-дегидрогеназ заключается в отщеплении атомов водорода и переносе их на другой субстрат. Эта подгруппа чаще всего встречается в реакциях дыхания, фотосинтеза. В составе дегидрогеназ обязательно присутствует кофермент в виде НАД/НАДФ или флавопротеидов ФАД/ФМН. Нередко встречаются ионы металлов. Примерами могут служить такие энзимы, как цитохромредуктазы, пируватдегидрогеназа, изоцитратдегидрогеназа, а также многие ферменты печени (лактатдегидрогеназа, глутаматдегидрогеназа и т. д.).

б) Оксидазы. Ряд ферментов катализирует присоединение кислорода к водороду, в результате чего продуктами реакции могут быть вода или пероксид водорода (H 2 0, H 2 0 2). Примеры ферментов: цитохромоксидаза, тирозиназа.

в) Пероксидазы и каталазы - энзимы, катализирующие распад H 2 O 2 на кислород и воду.

г) Оксигеназы. Эти биокатализаторы ускоряют присоединение кислорода к субстрату. Дофамингидроксилаза - один из примеров таких энзимов.

2. Трансферазы.

Задача ферментов этой группы состоит в переносе радикалов от вещества-донора к веществу-реципиенту.

а) Метилтрансферазы. ДНК-метилтрансферазы - основные ферменты, контролирующие процесс репликации нуклеотидов играет большую роль в регуляции работы нуклеиновой кислоты.

б) Ацилтрансферазы. Энзимы этой подгруппы транспортируют ацильную группу с одной молекулы на другую. Примеры ацилтрансфераз: лецитинхолестеринацилтрансфераза (переносит функциональную группу с жирной кислоты на холестерин), лизофосфатидилхолинацилтрансфераза (ацильная группа переносится на лизофосфатидилхолин).

в) Аминотрансферазы - ферменты, которые участвуют в превращении аминокислот. Примеры ферментов: аланинаминотрансфераза, которая катализирует синтез аланина из пирувата и глутамата путем переноса аминогруппы.

г) Фосфотрансферазы. Ферменты этой подгруппы катализируют присоединение фосфатной группы. Другое название фосфотрансфераз, киназы, встречается намного чаще. Примерами могут служить такие энзимы, как гексокиназы и аспартаткиназы, которые присоединяют фосфорные остатки к гексозам (чаще всего к глюкозе) и к аспарагиновой кислоте соответственно.

3. Гидролазы - класс энзимов, которые катализируют расщепление связей в молекуле с последующим присоединением воды. Вещества, которые относятся к этой группе, - основные ферменты пищеварения.

а) Эстеразы - разрывают эфирные связи. Пример - липазы, которые расщепляют жиры.

б) Гликозидазы. Биохимия ферментов этого ряда заключается в разрушении гликозидных связей полимеров (полисахаридов и олигосахаридов). Примеры: амилаза, сахараза, мальтаза.

в) Пептидазы - энзимы, катализирующие разрушение белков до аминокислот. К пептидазам относятся такие ферменты, как пепсины, трипсин, химотрипсин, карбоиксипептидаза.

г) Амидазы - расщепляют амидные связи. Примеры: аргиназа, уреаза, глутаминаза и т. д. Многие ферменты-амидазы встречаются в

4. Лиазы - ферменты, по функции схожие с гидролазами, однако при расщеплении связей в молекулах не затрачивается вода. Энзимы этого класса всегда имеют в составе небелковую часть, например, в виде витаминов В1 или В6.

а) Декарбоксилазы. Эти ферменты действуют на С-С связь. Примерами могут служить глутаматдекарбоксилаза или пируватдекарбоксилаза.

б) Гидратазы и дегидратазы - ферменты, которые катализируют реакцию расщепления связей С-О.

в) Амидин-лиазы - разрушают С-N связи. Пример: аргининсукцинатлиаза.

г) Р-О лиазы. Такие ферменты, как правило, отщепляют фосфатную группу от вещества-субстрата. Пример: аденилатциклаза.

Биохимия ферментов основана на их строении

Способности каждого энзима определяются индивидуальным, только ему свойственным строением. Любой фермент - это, прежде всего, белок, и его структура и степень сворачивания играют решающую роль в определении его функции.

Для каждого биокатализатора характерно наличие активного центра, который, в свою очередь, делится на несколько самостоятельных функциональных областей:

1) Каталитический центр - это специальная область белка, по которой происходит присоединение фермента к субстрату. В зависимости от конформации белковой молекулы каталитический центр может принимать разнообразную форму, которая должна соответствовать субстрату так же, как замок ключу. Такая сложная структура объясняет то, что находится в третичном или четвертичном состоянии.

2) Адсорбционный центр - выполняет роль «держателя». Здесь в первую очередь происходит связь между молекулой фермента и молекулой-субстратом. Однако связи, которые образует адсорбционный центр, очень слабые, а значит, каталитическая реакция на этом этапе обратима.

3) Аллостерические центры могут располагаться как в активном центре, так и по всей поверхности фермента в целом. Их функция - регулирование работы энзима. Регулирование происходит с помощью молекул-ингибиторов и молекул-активаторов.

Активаторные белки, связываясь с молекулой фермента, ускоряют его работу. Ингибиторы же, напротив, затормаживают каталитическую активность, причем это может происходить двумя способами: либо молекула связывается с аллостерическим центром в области активного центра фермента (конкурентное ингибирование), либо она присоединяется к другой области белка (неконкурентное ингибирование). считается более действенным. Ведь при этом закрывается место для связывания субстрата с ферментом, причем этот процесс возможен только в случае практически полного совпадения формы молекулы ингибитора и активного центра.

Энзим зачастую состоит не только из аминокислот, но и из других органических и неорганических веществ. Соответственно, выделяют апофермент - белковую часть, кофермент - органическую часть, и кофактор - неорганическую часть. Кофермент может быть представлен улгеводами, жирами, нуклеиновыми кислотами, витаминами. В свою очередь, кофактор - это чаще всего вспомогательные ионы металлов. Активность ферментов определяется его строением: дополнительные вещества, входящие в состав, меняют каталитические свойства. Разнообразные виды ферментов - это результат комбинирования всех перечисленных факторов образования комплекса.

Регуляция работы ферментов

Энзимы как биологически активные вещества не всегда необходимы организму. Биохимия ферментов такова, что они могут в случае чрезмерного катализа навредить живой клетке. Для предотвращения пагубного влияния энзимов на организм необходимо каким-то образом регулировать их работу.

Т. к. ферменты имеют белковую природу, они легко разрушаются при высоких температурах. Процесс денатурации обратим, однако он может существенно повлиять на работу веществ.

pH также играет большую роль в регуляции. Наибольшая активность ферментов, как правило, наблюдается при нейтральных значениях pH (7,0-7,2). Также есть энзимы, которые работают только в кислой среде или только в щелочной. Так, в клеточных лизосомах поддерживается низкий pH, при котором активность гидролитических ферментов максимальна. В случае их случайного попадания в цитоплазму, где среда уже ближе к нейтральной, их активность снизится. Такая защита от «самопоедания» основана на особенностях работы гидролаз.

Стоит упомянуть о значении кофермента и кофактора в составе ферментов. Наличие витаминов или ионов металла существенно влияет на функционирование некоторых специфических энзимов.

Номенклатура ферментов

Все ферменты организма принято называть в зависимости от их принадлежности к какому-либо из классов, а также по субстрату, с которым они вступают в реакцию. Иногда по используют в названии не один, а два субстрата.

Примеры названия некоторых энзимов:

  1. Ферменты печени: лактат-дегидроген-аза, глутамат-дегидроген-аза.
  2. Полное систематическое название фермента: лактат-НАД+-оксидоредукт-аза.

Сохранились и тривиальные названия, которые не придерживаются правил номенклатуры. Примерами являются пищеварительные ферменты: трипсин, химотрипсин, пепсин.

Процесс синтеза ферментов

Функции ферментов определяются еще на генетическом уровне. Т. к. молекула по большому счету - белок, то и ее синтез в точности повторяет процессы транскрипции и трансляции.

Синтез ферментов происходит по следующей схеме. Вначале с ДНК считывается информация о нужном энзиме, в результате чего образуется мРНК. Матричная РНК кодирует все аминокислоты, которые входят в состав энзима. Регуляция ферментов может происходить и на уровне ДНК: если продукта катализируемой реакции достаточно, транскрипция гена прекращается и наоборот, если возникла потребность в продукте, активизируется процесс транскрипции.

После того как мРНК вышла в цитоплазму клетки, начинается следующий этап - трансляция. На рибосомах эндоплазматической сети синтезируется первичная цепочка, состоящая из аминокислот, соединенных пептидными связями. Однако молекула белка в первичной структуре еще не может выполнять свои ферментативные функции.

Активность ферментов зависит от структуры белка. На той же ЭПС происходит скручивание протеина, в результате чего образуются сначала вторичная, а потом третичная структуры. Синтез некоторых ферментов останавливается уже на этом этапе, однако для активизации каталитической активности зачастую необходимо присоединение кофермента и кофактора.

В определенных областях эндоплазматической сети происходит присоединение органических составляющих энзима: моносахаридов, нуклеиновых кислот, жиров, витаминов. Некоторые ферменты не могут работать без наличия кофермента.

Кофактор играет решающую роль в образовании Некоторые функции ферментов доступны только при достижении белком доменной организации. Поэтому для них очень важно наличие четвертичной структуры, в которой соединяющим звеном между несколькими глобулами белка является ион металла.

Множественные формы ферментов

Встречаются ситуации, когда необходимо наличие нескольких энзимов, катализирующих одну и ту же реакцию, но отличающихся друг от друга по каким-либо параметрам. Например, фермент может работать при 20 градусах, однако при 0 градусов он уже не сможет выполнять свои функции. Что делать в подобной ситуации живому организму при низких температурах среды?

Эта проблема легко решается наличием сразу нескольких ферментов, катализирующих одну и ту же реакцию, но работающих в разных условиях. Существуют два типа множественных форм энзимов:

  1. Изоферменты. Такие белки кодируются разными генами, состоят из разных аминокислот, однако катализируют одну и ту же реакцию.
  2. Истинные множественные формы. Эти белки транскрибируются с одного и того же гена, однако на рибосомах происходит модификация пептидов. На выходе получают несколько форм одного и того же фермента.

В результате первый тип множественных форм сформирован на генетическом уровне, когда второй - на посттрансляционном.

Значение ферментов

В медицине сводится к выпуску новых лекарственных средств, в составе которых вещества уже находятся в нужных количествах. Ученые еще не нашли способ стимулирования синтеза недостающих энзимов в организме, однако сегодня широко распространены препараты, которые могут на время восполнить их недостаток.

Различные ферменты в клетке катализируют большое количество реакций, связанных с поддержанием жизнедеятельности. Одними из таких энизмов являются представители группы нуклеаз: эндонуклеазы и экзонуклеазы. Их работа заключается в поддержании постоянного уровня нуклеиновых кислот в клетке, удалении поврежденных ДНК и РНК.

Не стоит забывать о таком явлении, как свертывание крови. Являясь эффективной мерой защиты, данный процесс находится под контролем ряда ферментов. Главным из них является тромбин, который переводит неактивный белок фибриноген в активный фибрин. Его нити создают своеобразную сеть, которая закупоривает место повреждения сосуда, тем самым препятствуя излишней кровопотере.

Ферменты используются в виноделии, пивоварении, получении многих кисломолочных продуктов. Для получения спирта из глюкозы могут использоваться дрожжи, однако для удачного протекания этого процесса достаточно и экстракта из них.

Интересные факты, о которых вы не знали

Все ферменты организма имеют огромную массу - от 5000 до 1000000 Да. Это связано с наличием белка в составе молекулы. Для сравнения: молекулярная масса глюкозы - 180 Да, а углекислого газа - всего 44 Да.

На сегодняшний день открыто более чем 2000 ферментов, которые были обнаружены в клетках различных организмов. Однако большинство из этих веществ до конца еще не изучено.

Активность ферментов используется для получения эффективных стиральных порошков. Здесь энзимы выполняют ту же роль, что и в организме: они разрушают органические вещества, и это свойство помогает в борьбе с пятнами. Рекомендуется использовать подобный стиральный порошок при температуре не выше 50 градусов, иначе может пойти процесс денатурации.

По статистике, 20% людей по всему миру страдает от недостатка какого-либо из ферментов.

О свойствах энзимов знали очень давно, однако только в 1897 году люди поняли, что для сбраживания сахара в спирт можно использовать не сами дрожжи, а экстракт из их клеток.

Когда мы говорим «малатдегидрогеназа» или «глюкозо-6-фосфатаза», то обычно имеем в виду конкретный белок, обладающий форментативной активностью, однако в действительности эти наименования охватывают все белки, катализирующие окисление малата в оксалоацетат или гидролиз глюкозо-6-фосфата с образованием глюкозы и . В частности, после выделения малатдегидрогеназы из различных источников (печени крысы, Е. coli) обнаружилось, что ферменты из печени и фермент из Е. coli, катализирующие одну и ту же реакцию, различаются во многих отношениях по своим физическим и химическим свойствам. Физически различимые формы ферментов, обладающие одним и тем же видом каталитической активности, могут присутствовать в разных тканях одного организма, в разных типах клеток одной ткани и даже в прокариотическом организме, например в Е. coli. Это открытие было сделано благодаря применению электрофоретических методов разделения белков, в результате чего были обнаружены электрофоретически разные формы определенной ферментативной активности.

Термин «изофермент» («изозим») охватывает все вышеупомянутые физически различимые белки с данной каталитической активностью, однако на практике, и особенно в клинической медицине, его употребляют в более узком смысле, подразумевая физически различимые и поддающиеся разделению формы данного фермента, присутствующие в различных типах клеток данного эукариотического организма, например человека. Изозимы неизменно обнаруживаются в сыворотке и в тканях всех позвоночных, насекомых и в одноклеточных организмах. При этом число ферментов и их содержание сильно варьируют. Известны изоферментные формы дегидрогеназ, оксидаз, трансаминаз, фосфатаз, трансфос-форилаз и протеолитических ферментов. В различных тканях могут находиться разные изоферменты, и эти изоферменты могут иметь неодинаковое сродство к субстратам.

Диагностическое значение изозимов

Медицинский интерес к изозимам возник после того, как было обнаружено, что сыворотка человека содержит несколько изозимов лактатдегидрогеназы и что их относительное содержание значительно изменяется при определенных патологических состояниях. Впоследствии было выявлено много других случаев изменения относительного содержания изозимов при разных заболеваниях.

Изозимы сывороточной лактатдегидрогеназы обнаруживаются после электрофореза при на крахмальном, агаровом или полиакриламидном гелях. При указанном значении изозимы несут разный заряд и распределяются на электрофореграмме в пяти разных местах. Далее изозимы можно обнаружить благодаря их способности катализировать восстановление бесцветных красителей в нерастворимую окрашенную форму.

Типичный набор реагентов для обнаружения изозимов дегидрогеназы включает:

1) восстановленный субстрат (например, лактат);

2) кофермент ;

3) краситель в окисленной форме (например, голубая нитротетразолиевая соль);

4) переносчик электронов от NADH к красителю [например, феназинметасульфат (ФМС)];

5) буфер; активирующие ионы (если требуются).

Лактатдегидрогеназа катализирует перенос двух электронов и одного иона от лактата к

Рис. 7.8. Реакция, катализируемая -лактатдегидрогеназой.

(рис. 7.8). Если электрофореграмму опрыскать приведенной выше смесью и затем инкубировать при то реакция сопряженного переноса электронов будет протекать только в тех местах, где присутствует лактатдегидрогеназы (рис. 7.9). Относительную плотность окраски полос можно далее оценить количественно с помощью сканирующего фотометра (рис. 7.10). Изозим с наибольшим отрицательным зарядом обозначают .

Физическая природа изозимов

Олигомерные ферменты, образованные разными протомерами, могут быть представлены несколькими формами. Часто определенная ткань продуцирует преимущественно один из протомеров. Если активный олигомерный фермент (например, тетрамер) может быть построен из таких протомеров в различных комбинациях, то образуются изозимы.

Изозимы лактатдегидрогеназы различаются на уровне четвертичной структуры. Олигомерная молекула лактатдегидрогеназы (мол. масса 130000) состоит из четырех протомеров двух типов, Н и М (оба с мол. массой около 34000). Каталитической активностью обладает только тетрамерная молекула.

Рис. 7.9. Локализация лактатдегидрогеназы на электрофореграммс с использованием системы сопряженных реакций.

Если порядок соединения протомеров не имеет значения, то протомеры могут быть скомпонованы пятью способами:

Маркерт подобрал условия для разрушения и реконструкции четвертичной структуры и сумел выяснить взаимоотношения между изозимами лактатдегидрогеназы. Расщепление и реконструкция лактат-дегидрогеназ I, и 15 не приводят к образованию новых изозимов. Следовательно, эти два изозима содержат только один тип протомеров. Когда такой же процедуре была подвергнута смесь лактатдегидрогеназ 1, и 15, появились также формы 12, 13 и 14. Соотношение изозимов соответствует приведенному ниже субъединичному составу:

Синтез Н- и М-субъединиц детерминируется разными генетическими локусами, и они по-разному экспрессируются в разных тканях (например, в сердечной и скелетной мышцах).

Изоферменты , или изоэнзимы – это множественные формы фермента , катализирующие одну и ту же реакцию, но отличающиеся друг от друга по физическим и химическим свойствам, в частности по сродству к субстрату, максимальной скорости катализируемой реакции (активности), электрофоретической подвижности или регуляторным свойствам.

В живой природе имеются ферменты, молекулы которых состоят из двух и более субъединиц, обладающих одинаковой или разной первичной, вторичной или третичной структурой. Субъединицы нередко называют протомерами, а объединенную олигомерную молекулу – мультимером (рис. 14.8 а-г).

Считают, что процесс олигомеризации придает субъединицам белков повышенную стабильность и устойчивость по отношению к действию денатурирующих агентов, включая нагревание, влияние протеиназ и др. Однако на нынешнем этапе знаний нельзя ответить однозначно на вопрос о существенности четвертичной структуры для каталитической активности ферментов, поскольку пока отсутствуют методы, позволяющие в «мягких» условиях разрушить лишь четвертичную структуру. Обычно применяемые методы жесткой обработки (экстремальные значения рН, высокие концентрации гуанидинхлорида или мочевины) приводят к разрушению не только четвертичной, но и вторичной, и третичной структур стабильного олигомерного фермента, протомеры которого оказываются денатурированными и, как следствие, лишенными биологической активности.

Рис. 14.8. Модели строения некоторых олигомерных ферментов: а – молекула глутаматдегидрогеназы, состоящая из 6 протомеров (336 кДа); б – молекула РНК-полимеразы; в – половина молекулы каталазы; г – молекулярный комплекс пируватдегидрогеназы

Следует указать на отсутствие ковалентных, главновалентных связей между субъединицами. Связи в основном являются нековалентными, поэтому такие ферменты довольно легко диссоциируют на протомеры. Удивительной особенностью таких ферментов является зависимость активности всего комплекса от способа упаковки отдельных субъединиц. Если генетически различимые субъединицы могут существовать более чем в одной форме, то соответственно и фермент, образованный из двух или нескольких типов субъединиц, сочетающихся в разных количественных пропорциях, может существовать в нескольких сходных, но не одинаковых формах. Подобные разновидности фермента получили название изоферментов (изоэнзимов или, реже, изозимов ).

Одним из наиболее изученных ферментов, множественность форм которого детально изучена методом гель-электрофореза, является лактатдегидрогеназа (ЛДГ), катализирующая обратимое превращение пировиноградной кислоты в молочную. Она может состоять из четырёх субъединиц двух разных Н- и М- типов (сердечный и мышечный). Активный фермент представляет собой одну из следующих комбинаций: НННН, НННМ, ННММ, НМММ, ММММ или Н 4 , Н 3 М, Н 2 М 2 , НМ 3 , М 4 . Они соответствуют изоферментам ЛДГ 1 , ЛДГ 2 , ЛДГ 3 , ЛДГ 4 , и ЛДГ 5 . При этом синтез Н- и М-типов осуществляется различными генами и в разных органах экспрессируется по-разному.

Поскольку Н-протомеры при рН 7,0-9,0 несут более выраженный отрицательный заряд, чем М-протомеры, то изофермент Н 4 при электрофорезе будет мигрировать с наибольшей скоростью в электрическом поле к положительному электроду (аноду). С наименьшей скоростью будет продвигаться к аноду изофермент М 4 , в то время как остальные изоферменты будут занимать промежуточные позиции (рис. 14.9).

Рис. 14.9. Распределение и относительное количество изоферментов ЛДГ в различных органах

Для каждой ткани в норме характерно свое соотношение форм (изоферментный спектр) ЛДГ. Например, в сердечной мышце преобладает тип Н 4 , т. е. ЛДГ 1 , а в скелетных мышцах и печени – тип М 4 , т.е. ЛДГ 5 .

Эти обстоятельства широко используют в клинической практике, поскольку изучение появления изоферментов ЛДГ (и ряда других ферментов) в сыворотке крови может представлять интерес для дифференциальной диагностики органических и функциональных поражений органов и тканей. По изменению содержания изоферментов в сыворотке крови можно судить как о топографии патологического процесса, так и о степени поражения органа или ткани.

В одних случаях субъединицы имеют почти идентичную структуру и каждая содержит каталитически активный участок (например, -галактозидаза, состоящая из четырё субъединиц). В других случаях субъединицы оказываются неидентичными. Примером последних может служить триптофансинтаза, состоящая из двух субъединиц, каждая из которых наделена собственной (но не основной) энзиматической активностью, однако, только будучи объединенными в макромолекулярную структуру, обе субъединицы проявляют триптофансинтазную активность.

Термин «множественные формы фермента » применим к белкам, катализирующим одну и ту же реакцию и встречающимся в природе в организмах одного вида. Термин «изофермент » применим только к тем множественным формам ферментов, которые появляются вследствие генетически обусловленных различий в первичной структуре белка (но не к формам, образовавшимся в результате модификации одной первичной последовательности).

Изоферменты. Часть ферментов состоят не из одной белковой цепочки, а из нескольких субъединиц. Изоферменты – это семейство ферментов, которые катализируют одну и ту же реакцию, но отличаются по строению и физико-химическим свойствам.

Например: лактатдегидрогеназа (ЛДГ) состоит их 4 субъединиц 2хтипов: субъединица Н, выделенная из сер дечной мышцы (heart – сердце), субъединица М, выделенная из скелетных мышц (musculus – мышца). Эти субъединицы кодируются разными генами. В разных органах имеются различные формы ЛДГ с различным набором субъединиц. Известно 5 изоферментов ЛДГ:
ЛДГ1: ЛДГ2: ЛДГ3: ЛДГ4: ЛДГ5: (Н4) (Н3М) (Н2М2) (НМ3) (М4)
ЛДГ1 экспрессируется в сердечной мышце и мозге, а ЛДГ5 – в скелетных мышцах и печени. Остальные формы в других органах. Появление ЛДГ в крови свидетельствует о повреждении органов (фермент из разрушенных клеток поступает в кровь – гиперферментемия) Повышение активности фракции ЛДГ1 в крови наблюдается при повреждении сердечной мышцы (инфаркт миокарда), а повышение активности ЛДГ5 в крови наблюдается при гепатитах и повреждении скелетных мышц. То есть благодаря изоферментам можно определить локализацию поврежденного органа. Наиболее чувствительным тестом на инфаркт миокарда является повышение в крови сердечного изофермента креатинкиназы.

Энзимопатии наследственные (фенилкетонурия) и приобретенные (цинга). Применение ферментов для лечения болезней.

В основе многих заболеваний лежат нарушения функционирования ферментов в клетке - энзимопатии. Различают первичные (наследственные) и вторичные (приобретённые) энзимопатии. Приобретённые энзимопатии, как и вообще протеинопатии, по-видимому, наблюдают при всех болезнях.

При первичных энзимопатиях дефектные ферменты наследуются, в основном, по аутосомнорецессивному типу. Гетерозиготы, чаще всего, не имеют фенотипических отклонений. Первичные энзимопатии обычно относят к метаболическим болезням, так как происходит нарушение определённых метаболических путей. При этом развитие заболевания может протекать по одному из ниже перечисленных "сценариев". Рассмотрим условную схему метаболического пути:

Вещество А в результате последовательных ферментативных реакций превращается в продукт Р. При наследственной недостаточности какого-либо фермента, например фермента Е3, возможны разные нарушения метаболических путей:

Нарушение образования конечных продуктов. Недостаток конечного продукта этого метаболического пути (Р) (при отсутствии альтернативных путей синтеза) может приводить к развитию клинических симптомов, характерных для данного заболевания:

Накопление субстратов-предшественников. При недостаточности фермента Е 3 будут накапливаться вещество С, а также во многих случаях и предшествующие соединения. Увеличение субстратов-предшественников дефектного фермента - ведущее звено развития многих заболеваний:

Нарушение образования конечных продуктов и накопление субстратов предшественников. Отмечают заболевания, когда одновременно недостаток продукта и накопление исходного субстрата вызывают клинические проявления.

Ферментные препараты широко используют в медицине. Ферменты в медицинской практике находят применение в качестве диагностических (энзимодиагностика) и терапевтических (энзимотерапия) средств. Кроме того, ферменты используют в качестве специфических реактивов для определения ряда веществ. Так, глюкозооксидазу применяют для количественного определения глюкозы в моче и крови. Фермент уреазу используют для определения содержания количества мочевины в крови и моче. С помощью различных дегидрогеназ обнаруживают соответствующие субстраты, например пируват, лактат, этиловый спирт и др.

А. Энзимодиагностика

Энзимодиагностика заключается в постановке диагноза заболевания (или синдрома) на основе определения активности ферментов в биологических жидкостях человека. Принципы энзимодиагностики основаны на следующих позициях:

  • при повреждении клеток в крови или других биологических жидкостях (например, в моче) увеличивается концентрация внутриклеточных ферментов повреждённых клеток;
  • количество высвобождаемого фермента достаточно для его обнаружения;
  • активность ферментов в биологических жидкостях, обнаруживаемых при повреждении клеток, стабильна в течение достаточно длительного времени И отличается от нормальных значений;
  • ряд ферментов имеет преимущественную или абсолютную локализацию в определённых органах (органоспецифичность);
  • существуют различия во внутриклеточной локализации ряда ферментов.

ИЗОФЕРМЕНТЫ (син.: множественные формы ферментов, изозимы ) - молекулярные формы (разновидности) определенного фермента, отличающиеся только по физико-химическим свойствам; определение изофермент-ного спектра различных ферментов в сыворотке крови является одним из важных методов клин, энзимодиагностики. И. обнаружены в тканях человека, животных, растений и микроорганизмов. Известно св. 50 ферментов, представленных в виде И. в различных органах и тканях человека, животных и растений.

И. могут отличаться друг от друга по четвертичной структуре, т. е. по характеру и количеству субъединиц, входящих в состав их молекул, по электрофоретической подвижности, адсорбционным свойствам, сродству к субстрату, оптимальному значению pH, субклеточной локализации, специфичности в отношении коферментов (см.) и т. д. Так, напр., большинство органов и тканей человека и животных содержит пять И. лактатдегидрогеназы (ЛДГ), каждый из которых представляет собой различные комбинации из четырех субъединиц двух типов с мол. весом 34 500, условно обозначенных «Н» и «М» (см. Лактатдегидрогеназа). Оба типа субъединиц различаются по аминокислотному составу, последовательности остатков аминокислот в молекуле, иммунохим. и электрофоретическим свойствам. Синтез субъединиц контролируется двумя различными генами. Малатдегидрогеназа (МДГ) представлена в различных тканях человека и животных двумя И., один из которых локализован в митохондриях, а другой - в цитоплазме. Оба эти И. различаются по специфичности в отношении НАД и чувствительности к ингибиторам (напр., оксалату). И. изоцитратдегидрогеназы (ИЦДГ; КФ 1.1.1. 41 и 1.1.1.42) различаются по специфичности к коферментам (НАД и НАДФ), а также по субклеточной локализации: НАД-ИЦДГ локализована в митохондриях, а НАДФ-ИЦДГ и в митохондриях, и в цитоплазме. Митохондриальная и цитоплазматическая НАДФ-ИЦДГ различаются между собой по каталитическим, электрофоретическим и иммунохим. свойствам.

Для идентификации и разделения И. используют различные физ.-хим. методы исследования: различные виды электрофореза (см.), адсорбционную и ионообменную хроматографию (см.), гель-фильтрацию (см.) и др. Наиболее широкое распространение как самый доступный получил метод электрофореза в полиакриламидном геле (диск-электрофорез). Различия в электрофоретических свойствах являются основой для классификации многих И. Для обозначения И. приводится сокращенное название фермента с соответствующим подстрочным порядковым номером, который характеризует электрофоретическую подвижность И. при определенном значении pH. Напр., И. лактатдегидрогеназы обозначаются как ЛДГ1, ЛДГ2, ЛДГ3 и т. д.

Биол, значение наличия множественных форм ферментов еще не ясно. Предполагают, что И. играют определенную роль в регуляции метаболических процессов в клетке. Возможно, что И. обеспечивают приспособляемость организма к изменениям окружающей среды и обусловливают специфичность обмена, характерную именно для данной ткани. Поэтому многие ферменты, занимающие ключевые позиции в обмене веществ, имеют И. (ЛДГ, МДГ, ферменты, катализирующие окислительное фосфорилирование, различные аминотрансферазы). Возможно, что различные И. одного и того же фермента специфически катализируют прямую или обратную реакции определенной ферментативной реакции (см. Лактатдегидрогеназа). О важной роли И. в тонкой регуляции метаболических процессов свидетельствует изменение их спектра под влиянием ряда воздействий и физиол, факторов (денервации, различных гормонов, охлаждения, гипоксии и др.). Отмечено изменение в характере распределения различных И. в тканях человека и животных в эмбриогенезе. Однако для изученных ферментов пока не найдено специфических эмбриональных форм И.

Спектр И. в количественном и качественном отношении в различных тканях человека и животных различен и часто строго специфичен. Это имеет большое диагностическое значение. Поскольку биосинтез отдельных И. и их субъединиц контролируется различными генами, предполагают, что видоизменение гена влечет за собой появление атипичных И. в тканях и крови. Т. о., возникает возможность использования определения спектров И. для диагностики генетических аномалий. Ряд патол. процессов, особенно дегенеративно-деструктивного характера, связан с изменением проницаемости клеточных мембран, что является причиной изменения спектра И. в сыворотке крови больного. Поэтому определение И. в крови и тканях человека находит все более широкое применение в клинике. Для решения некоторых вопросов диагностики, патогенеза и терапии ряда заболеваний определение изоферментных спектров имеет существенное преимущество по сравнению с определением общей активности того или иного фермента. Наибольшее диагностическое значение имеет определение изофермент-ного спектра ЛДГ, который меняется при инфаркте миокарда (резко повышается активность ЛДГ1 и ЛДГ2). Изменения спектра И. ЛДГ в сыворотке крови сохраняются дольше, чем изменения суммарной активности фермента, и могут обнаруживаться тогда, когда общая активность ЛДГ возвращается к норме. Отклонения спектра И. ЛДГ от нормы отмечены при заболеваниях гепатобилиарной системы, при мышечных дистрофиях, опухолевых заболеваниях, остром лейкозе, патол, процессах в легких (острые очаговые и крупозная пневмонии, обострение хрон, пневмонии и др.)*

Диагностическим тестом служат также изменения спектров И. и других ферментов, напр, значительное увеличение катодных фракций МДГ (в особенности митохондриальной фракции) в сыворотке крови больных циррозом печени но сравнению с сывороткой крови больных хрон, гепатитом. Определение спектра И. и общей активности МДГ в крови находит широкое применение для диагностики и оценки тяжести асфиксии у новорожденных. Изменения активности И. кислой фосфатазы отмечаются при болезни Гоше (см. Гоше болезнь), раке предстательной железы и множественной миеломе. Для диагностики ряда заболеваний печени используют определение спектра И. щелочной фосфатазы (см. Фосфатазы).

Определение И. аминотрансфераз (см.) также имеет диагностическую ценность. В печени, почках, сердечной мышце человека обнаруживаются два И. аспартат-аминотрансферазы (КФ 2.6.1.1; АсАТ). Один из них локализуется в митохондриях, другой - в цитоплазме клеток. Ок. 79% всей активности АсАТ приходится на долю митохондриального И. и лишь 21% на долю цитоплазматического. При тяжелом течении болезни Боткина в сыворотке крови обнаруживается два И. АсАТ, тогда как в норме и при легком течении заболевания - только один.

При повреждениях скелетной мускулатуры, а также при инфаркте миокарда в сыворотке крови повышается активность креатинкиназы (см.), а также изменяется спектр ее И.

Библиография: Генетика изоферментов, под ред. Д. К. Беляева, М., 1977, библиогр.; Иванов И. И., Коровки н Б. Ф. и М а р к e л о в И. М. Введение в клиническую энзимологии), Л., 1974, библиогр.; Комаров Ф. И., Коровкин Б. Ф. и Меньшиков В. В. Биохимические исследования в клинике, Л., 1976; Ленинджср А. Биохимия, пер. с англ., с. 217 и др., М., 1976; Проблемы медицинской химии, под ред. В. С. Шапота и Э. Г. Ларского, с. 5, М., 1973; У и л к и н с о н Д. Изоферменты, пер. с англ., М., 1968; Успехи биологической химии, под ред. В. Л. Кретовича и др., т. 9, с. 55, М., 1972; Enzyme nomenclature, Amsterdam, 1965; К а р 1 a n N. О. Symposium on multiple forms of enzymes and control mechanisms, Bact. Rev., "v. 27, p. 155, 1963; Latner A. L. Isoenzymes, Advanc. clin. Chem., v. 9, p. 69, 1967.

Л. В. Павлихина.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png