При изучении дисциплины «Начертательная геометрия и инженерная графика» студенты должны усвоить правила и последовательность выполнения геометрических построений и сопряжений. В этом отношении лучшим способом приобретения навыков построения являются задания по вычерчиванию контуров сложных деталей.

Прежде чем приступить к выполнению контрольного задания, нужно изучить технику выполнения геометрических построений и сопряжений по методическому пособию.

Сопряжения линий

Сопряжением называется плавный переход от одной линии к другой. Для построения любого сопряжения дугой заданного радиуса нужно найти:

  1. Центр сопряжения – центр, из которого проводят дугу;
  2. Точки сопряжения (касания) – точки, в которых одна линия переходит в другую.

Центр сопряжения находится от точек сопряжения на одинаковых расстояниях, равных радиусу сопряжения R. Переход от прямой к окружности будет плавным в том случае, если прямая касается к окружности. Точка сопряжения К лежит на перпендикуляре, опущенном из центра О окружности к прямой (рис. 1)


Переход от одной окружности к другой будет плавным, если окружности касаются.

Различают два случая касания дуг окружностей: внешнее (рис. 2) и внутреннее (рис.3).

При внешнем касании центры окружностей лежат по разные стороны от их общей касательной L (рис. 2). Расстояние между их центрами ОО 1 равно сумме радиусов окружностей R+R 1 и точка касания лежит на прямой ОО 1 , соединяющей их центры.

При внутреннем касании центры окружностей лежат по одну сторону от их общей касательной L. Расстояние между их центрами ОО 1 равно разности их радиусов R-R 1 и точка касания К окружностей лежит на продолжении прямой ОО 1 (рис. 3).



Касание дуг окружностей:

рис. 2 – сопряжение двух окружностей (внешнее касание)

рис. 3 – сопряжение двух окружностей (внутреннее касание)

Сопряжение двух пересекающихся прямых

Даны пересекающиеся под прямым, острым и тупым углами прямые линии.

Требуется построить сопряжения этих прямых дугой заданного радиуса R.


  1. Для нахождения центра сопряжения проводят вспомогательные прямые, параллельные данным на расстоянии равном радиусу R. Точка пересечения этих прямых т.О и будет центом дуги сопряжения (рис. 4).
  2. Перпендикуляры, опущенные из центра дуги сопряжения т.О на данные прямые, определяют точки касания К и N.
  3. Из точки О, как центра, описывают дугу заданного радиуса R.


Примечание. Для прямых углов центр сопряжения удобнее находить с помощью циркуля (рис. 5).

Сопряжение дуги окружности и прямой линии дугой заданного радиуса.

Внешнее касание

Дана окружность радиуса R и прямая АВ. Требуется соединить их дугой радиусом R1.

  1. Для нахождения центра сопряжения из центра О заданной окружности проводят дугу m радиуса R + R 1 и на расстоянии R 1 – прямую n // AB. Точка О 1 пересечения прямой n и дуги m будет центром сопряжения.
  2. Для получения точек сопряжения: К и К 1 проводят линию центров ОО 1 и восстанавливают к прямой АВ перпендикуляр ОК 1 .
  3. Из центра сопряжения О 1 между точками К и К 1 проводят дугу сопряжения радиусом R 1

Внутреннее касание

В случае внутреннего касания выполняют те же построения, но дугу m вспомогательной окружности проводят радиусом R - R 1 .



Сопряжение двух окружностей дугой заданного радиуса

Заданы две окружности радиусом R 1 и R 2 . Требуется построить сопряжение дугой заданного радиуса R.

Внешнее касание

  1. Для определения центра сопряжения О проводят вспомогательные дуги: из центра О 1 окружности радиусом R + R 1 и из центра О 2 окружности радиуса R + R 2 . Точка О пересечения этих дуг является центом сопряжения.
  2. Соединяя центры О и О 1 , а так же О и О 2 , определяют точки сопряжения (касания) К 1 и К 2 .
  3. Из центра О радиусом R проводят дугу сопряжения между точками К 1 и К 2

Внутреннее касание

При внутреннем касании выполняют те же построения, но дуги проводят радиусами

R -R 1 и R - R 2 .


Смешанное касание


Центр сопряжения О находится в пересечении двух дуг, описанных из центра О 1 радиусом R - R 1 и из центра О 2 радиусом R + R 2

Примечание. При смешанном сопряжении центр О 1 одной из сопрягаемых дуг лежит внутри сопрягающей дуги радиуса R , а центр О 2 другой дуги – вне ее.

Частные случаи

Нахождение центра дуги заданного радиуса.

Задана дуга радиусом R, соединяющая две параллельные прямые m и n и проходящая через точку А ∈ m (рис. 11). Требуется найти центр О заданной дуги.


В основу построения положено нахождение точки О, равноудаленной от заданных прямых (рис. 11).

  1. Из точки А ∈ m , как из центра, проводят дугу вспомогательной окружности с заданным радиусом R.
  2. Проводят вспомогательную прямую l , параллельную прямой n , на расстоянии, равном заданному радиусу R.
  3. Точка О – точка пересечения этих вспомогательных линий является центром заданной дуги. (рис. 12)

Литература

  1. Боголюбов С.К. Инженерная графика: Учебник для средних специальных учебных заведений. – 3-е изд., испр. И доп. - М.: Машиностроение, 2006. – с.392: ил.
  2. Куприков М.Ю. Инженерная графика: учебник для ССУЗов – М.: Дрофа, 2010 – 495 с.: ил.
  3. Федоренко В.А., Шошин А.И. Справочник по машиностроительному черчению Л.: Машиностроение. 1976. 336 с.

В этой небольшой статье, будут рассмотрены основные виды сопряжений и Вы узнаете о том, как построить сопряжение углов, прямых линий, окружностей и дуг, окружностей с прямой.

Сопряжением называют плавный переход одной линии в другую. Для того чтобы построить сопряжение, нужно найти центр сопряжения и точки сопряжений.

Точка сопряжения – это общая точка для сопрягаемых линий. Точку сопряжения также называют точкой перехода.

Ниже будут рассмотрены основные типы сопряжений .

Сопряжение углов (Сопряжение пересекающихся прямых)

Сопряжение прямого угла(Сопряжение пересекающихся прямых под прямым углом)

В данном примере будет рассмотрено построение сопряжения прямого угла заданным радиусом сопряжения R. Первым делом найдём точки сопряжения. Для нахождения точек сопряжения, нужно поставить циркуль в вершину прямого угла и провести дугу радиусом R до пересечения со сторонами угла. Полученные точки и будут являться точками сопряжения. Далее нужно найти центр сопряжения. Центром сопряжения будет точка равноудалённая от сторон угла. Проведём из точек a и b две дуги радиусом сопряжения R до пересечения друг с другом. Полученная на пересечении точка О и будет центром сопряжения. Теперь из центра сопряжения точки О описываем дугу радиусом сопряжения R от точки a до точки b. Сопряжение прямого угла построено.

Сопряжение острого угла(Сопряжение пересекающихся прямых под острым углом)

Ещё один пример сопряжения угла. В этом примере будет построено сопряжение
острого угла
. Для построения сопряжения острого угла раствором циркуля,равным радиусу сопряжения R, проведём из двух произвольных точек на каждой стороне угла по две дуги. Затем проведём касательные к дугам до пересечения в точке О, центре сопряжения. Из полученного центра сопряжения опустим перпендикуляр к каждой из сторон угла. Так мы получим точки сопряжения a и b. Затем проведём из центра сопряжения, точки О, дугу радиусом сопряжения R, соединив точки сопряжения a
и b. Сопряжение острого угла построено.

Сопряжение тупого угла(Сопряжение пересекающихся прямых под тупым углом)

Строится по аналогии с сопряжением острого угла. Мы также, сначала радиусом сопряжения R проводим по две дуги из двух произвольно взятых точек на каждой из сторон, а затем проводим касательные к этим дугам до пересечения в точке О, центре сопряжения. Затем опускаем перпендикуляры из центра сопряжения к каждой из сторон и соединяем дугой, равной радиусу сопряжения тупого угла R, полученные точки a и b.

Сопряжение параллельных прямых линий

Построим сопряжение двух параллельных прямых . Нам задана точка сопряжения a, лежащая на одной прямой. Из точки a проведём перпендикуляр до пересечения его с другой прямой в точке b. Точки a и b являются точками сопряжения прямых линий. Проведя из каждой точки дугу, радиусом больш отрезка ab, найдём центр сопряжения — точку О. Из центра сопряжения проведём дугу заданного радиуса сопряжения R.

Сопряжение окружностей(дуг) с прямой линией

Внешнее сопряжение дуги и прямой линии

В этом примере будет построено сопряжение заданным радиусом r прямой линии, заданной отрезком AB, и дуги окружности радиусом R.

Сначала найдём центр сопряжения. Для этого проведём прямую, параллельную отрезку AB и отстоящую от него на расстояние радиуса сопряжения r, и дугу, из центра окружности OR радиусом R+r. Точка пересечения дуги и прямой и будет центром сопряжения – точкой Оr .

Из центра сопряжения, точки Оr , опустим перпендикуляр на прямую AB. Точка D, полученная на пересечении перпендикуляра и отрезка AB, и будет точкой сопряжения. Найдём вторую точку сопряжения на дуге окружности. Для этого соединим центр окружности ОR и центр сопряжения Оr линией. Получим вторую точку сопряжения – точку C. Из центра сопряжения проведём дугу сопряжения радиусом r, соединив точки сопряжения.

Внутреннее сопряжение прямой линии с дугой

По аналогии строится внутреннее сопряжение прямой линии с дугой. Рассмотрим пример построения сопряжения радиусом r прямой линии, заданной отрезком AB, и дуги окружности радиуса R. Найдём центр сопряжения. Для этого построим прямую, параллельную отрезку AB и отстоящую от него на расстояние радиуса r, и дугу, из центра окружности OR радиусом R-r. Точка Оr , полученная на пересечении прямой и дуги, и будет центром сопряжения.

Из центра сопряжения(точка Оr ) опустим перпендикуляр на прямую AB. Точка D, полученная на основании перпендикуляра, и будет точкой сопряжения.

Для нахождения второй точки сопряжения на дуге окружности, соединим центр сопряжения Оr и центр окружности ОR прямой линией. На пересечении линии с дугой окружности получим вторую точку сопряжения – точку C. Из точки Оr , центра сопряжения, проведём дугу радиусом r, соединив точки сопряжения.

Сопряжение окружностей (дуг)

Внешним сопряжением считается сопряжение, при котором центры сопрягаемых окружностей(дуг) O1(радиус R1) и O2 (радиус R2) располагаются за сопрягающей дугой радиуса R. На примере рассмотрено внешнее сопряжение дуг. Сначала находим центр сопряжения. Центром сопряжения является точка пересечения дуг окружностей с радиусами R+R1 и R+R2, построенных из центров окружностей O1(R1) и O2(R2) соответственно. Затем центры окружностей O1 и O2 соединяем прямыми с центром сопряжения, точкой O, и на пересечении линий с окружностями O1 и O2 получаем точки сопряжения A и B. После этого, из центра сопряжения строим дугу заданного радиуса сопряжения R и соединяем ей точки A и B.

Внутренним сопряжением называется сопряжение, при котором центры сопрягаемых дуг O1, радиуса R1, и O2, радиус R2, располагаются внутри сопрягающей их дуги заданного радиуса R. На картинке ниже приведён пример построения внутреннего сопряжения окружностей(дуг). Вначале мы находим центр сопряжения, которым является точка O, точка пересечения дуг окружностей с радиусами R-R1 и R-R2 проведённых из центров окружностей O1и O2 соответственно. После чего соединяем центры окружностей O1 и O2 прямыми линиями с центром сопряжения и на пересечении линий с окружностями O1 и O2 получаем точки сопряжения A и B. Затем из центра сопряжения строим дугу сопряжения радиуса R и строим сопряжение.

Смешанным сопряжением дуг является сопряжение, при котором центр одной из сопрягаемых дуг (O1) лежит за пределами сопрягающей их дуги радиуса R, а центр другой окружности(O2) – внутри её. На иллюстрации ниже приведён пример смешанного сопряжения окружностей. Сначала находим центр сопряжения, точку O. Для нахождения центра сопряжения строим дуги окружностей с радиусами R+R1, из центра окружности радиуса R1 точки O1, и R-R2, из центра окружности радиуса R2 точки O2. После чего соединяем центр сопряжения точку O с центрами окружностей O1 и O2 прямыми и на пересечении с линиями соответствующих окружностей получаем точки сопряжения A и B. Затем строим сопряжение.

Средний уровень

Окружность и вписанный угол. Визуальный гид (2019)

Основные термины.

Хорошо ли ты помнишь все названия, связанные с окружностью? На всякий случай напомним - смотри на картинки - освежай знания.

Ну, во-первых - центр окружности - такая точка, расстояния от которой до всех точек окружности одинаковые.

Во-вторых - радиус - отрезок, соединяющий центр и точку на окружности.

Радиусов очень много (столько же, сколько и точек на окружности), но длина у всех радиусов - одинаковая.

Иногда для краткости радиусом называют именно длину отрезка «центр - точка на окружности», а не сам отрезок.

А вот что получится, если соединить две точки на окружности ? Тоже отрезок?

Так вот, этот отрезок называется «хорда» .

Так же, как и в случае с радиусом, диаметром часто называют длину отрезка, соединяющего две точки на окружности и проходящего через центр. Кстати, а как связаны диаметр и радиус? Посмотри внимательно. Конечно же, радиус равен половине диаметра.

Кроме хорд бывают еще и секущие.

Вспомнили самое простое?

Центральный угол - угол между двумя радиусами.

А теперь - вписанный угол

Вписанный угол - угол между двумя хордами, которые пересекаются в точке на окружности .

При этом говорят, что вписанный угол опирается на дугу (или на хорду) .

Смотри на картинку:

Измерения дуг и углов.

Длина окружности. Дуги и углы измеряются в градусах и радианах. Сперва о градусах. Для углов проблем нет - нужно научиться измерить дугу в градусах.

Градусная мера (величина дуги) - это величина (в градусах) соответствующего центрального угла

Что здесь значит слово «соответствующего»? Смотрим внимательно:

Видишь две дуги и два центральных угла? Ну вот, большей дуге соответствует больший угол (и ничего страшного, что он больше), а меньшей дуге соответствует меньший угол.

Итак, договорились: в дуге содержится столько же градусов, сколько в соответствующем центральном угле.

А теперь о страшном - о радианах!

Что же это за зверь такой «радиан»?

Представь себе: радианы - это способ измерения угла … в радиусах!

Угол величиной радиан - такой центральный угол, длина дуги которого равна радиусу окружности.

Тогда возникает вопрос - а сколько же радиан в развёрнутом угле?

Иными словами: сколько радиусов «помещается» в половине окружности? Или ещё по-другому: во сколько раз длина половины окружности больше радиуса?

Этим вопросом задавались учёные ещё в Древней Греции.

И вот, после долгих поисков они обнаружили, что отношение длины окружности к радиусу никак не хочет выражаться «человеческими» числами вроде и т.п.

И даже не получается выразить это отношение через корни. То есть, оказывается, нельзя сказать, что половина окружности в раза или в раз больше радиуса! Представляешь, как удивительно это было обнаружить людям впервые?! Для отношения длины половины окружности к радиусу на хватило «нормальных» чисел. Пришлось вводить букву.

Итак, - это число, выражающее отношение длины полуокружности к радиусу.

Теперь мы можем ответить на вопрос: сколько радиан в развёрнутом угле? В нём радиан. Именно оттого, что половина окружности в раз больше радиуса.

Древние (и не очень) люди на протяжении веков (!) попытались поточнее подсчитать это загадочное число, получше выразить его (хоть приблизительно) через «обыкновенные» числа. А мы сейчас до невозможности ленивы - нам достаточно двух знаков после занятой, мы привыкли, что

Задумайся, это значит, например, что y окружности с радиусом единица длина приблизительно равна, а точно эту длину просто невозможно записать «человеческим» числом - нужна буква. И тогда эта длина окружности окажется равной. И конечно, длина окружности радиуса равна.

Вернёмся к радианам.

Мы выяснили уже, что в развёрнутом угле содержится радиан.

Что имеем:

Значит, рад., то есть рад. Таким же образом получается табличка с наиболее популярными углами.

Соотношение между величинами вписанного и центрального углов.

Имеет место удивительный факт:

Величина вписанного угла вдвое меньше, чем величина соответствующего центрального угла.

Посмотри, как это утверждение выглядит на картинке. «Соответствующий» центральный угол такой, у которого концы совпадают с концами вписанного угла, а вершина в центре. И при этом «соответствующий» центральный угол должен «смотреть» на ту же хорду (), что и вписанный угол.

Почему же так? Давай разберёмся сначала на простом случае. Пусть одна из хорд проходит через центр. Ведь бывает же так иногда, верно?

Что же тут получается? Рассмотрим. Он равнобедренный - ведь и - радиусы. Значит, (обозначили их).

Теперь посмотрим на. Это же внешний угол для! Вспоминаем, что внешний угол равен сумм двух внутренних, не смежных с ним, и записываем:

То есть! Неожиданный эффект. Но и есть центральный угол для вписанного.

Значит, для этого случая доказали, что центральный угол вдвое больше вписанного. Но уж больно частный случай: правда ведь, далеко не всегда хорда проходит прямиком через центр? Но ничего, сейчас этот частный случай нам здорово поможет. Смотри: второй случай: пусть центр лежит внутри.

Давай сделаем вот что: проведём диаметр. И тогда … видим две картинки, которые уже разбирали в первом случае. Поэтому уже имеем, что

Значит, (на чертеже, а)

Ну вот, и остался последний случай: центр вне угла.

Делаем то же самое: проводим диаметр через точку. Все то же самое, но вместо суммы - разность.

Вот и всё!

Давай теперь сформируем два главных и очень важных следствия из утверждения о том, что вписанный угол вдвое меньше центрального.

Следствие 1

Все вписанные углы, опирающиеся на одну дугу, равны между собой.

Иллюстрируем:

Вписанных углов, опирающихся на одну и ту же дугу (у нас эта дуга) - бесчисленное множество, они могут выглядеть совсем по-разному, но у них у всех один и тот же центральный угол (), а значит, все эти вписанные углы равны между собой.

Следствие 2

Угол, опирающийся на диаметр - прямой.

Смотри: какой угол является центральным для?

Конечно, . Но он равен! Ну вот, поэтому (а так же ещё множество вписанных углов, опирающихся на) и равен.

Угол между двумя хордами и секущими

А что, если интересующий нас угол НЕ вписанный и НЕ центральный, а, например, такой:

или такой?

Можно ли его как-то выразить всё-таки через какие-то центральные углы? Оказывается, можно. Смотри: нас интересует.

a) (как внешний угол для). Но - вписанный, опирается на дугу - . - вписанный, опирается на дугу - .

Для красоты говорят:

Угол между хордами равен полусумме угловых величин дуг, заключённых в этот угол.

Так пишут для краткости, но конечно, при использовании этой формулы нужно иметь в виду центральные углы

b) А теперь - «снаружи»! Как же быть? Да почти так же! Только теперь (снова применяем свойство внешнего угла для). То есть теперь.

И значит, . Наведём красоту и краткость в записях и формулировках:

Угол между секущими равен полуразности угловых величин дуг, заключённых в этот угол.

Ну вот, теперь ты вооружён всеми основными знаниями об углах, связанных с окружностью. Вперёд, на штурм задач!

ОКРУЖНОСТЬ И ВПИСАННЫЙ УГОЛ. СРЕДНИЙ УРОВЕНЬ

Что такое окружность, знает и пятилетний ребёнок, не правда ли? У математиков, как всегда, на этот счёт есть заумное определение, но мы его приводить не будем (смотри ), а лучше вспомним, как называются точки, линии и углы, связанные с окружностью.

Важные термины

Ну, во-первых:

центр окружности - такая точка, расстояния от которой до всех точек окружности одинаковые.

Во-вторых:

Тут есть ещё одно принятое выражение: «хорда стягивает дугу». Вот, здесь на рисунке, например, хорда стягивает дугу. А если хорда вдруг проходит через центр, то у неё есть специальное название: «диаметр».

Кстати, а как связаны диаметр и радиус? Посмотри внимательно. Конечно же,

А теперь - названия для углов.

Естественно, не правда ли? Стороны угла выходят из центра - значит, угол - центральный.

Вот здесь иногда возникают сложности. Обрати внимание - НЕ ЛЮБОЙ угол внутри окружности - вписанный, а только такой, у которого вершина «сидит» на самой окружности.

Давай увидим разницу на картинках:

По-другому ещё говорят:

Тут есть один хитрый момент. Что такое «соответствующий» или «свой» центральный угол? Просто угол с вершиной в центре окружности и концами в концах дуги? Не совсем так. Посмотри-ка на рисунок.

Один из них, правда, и на угол-то не похож - он больше. Но это в треугольнике не может быть углов больше, а в окружности - вполне может! Так вот: меньшей дуге AB соответствует меньший угол (оранжевый), а большей - больший. Просто как, не правда ли?

Соотношение между величинами вписанного и центрального угла

Запомни очень важное утверждение:

В учебниках этот же факт любят записывать так:

Правда, с центральным углом формулировка проще?

Но всё же давай найдём соответствие между двумя формулировками, а заодно научимся находить на рисунках «соответствующий» центральный угол и дугу, на которую «опирается» вписанный угол.

Смотри: вот окружность и вписанный угол:

Где же его «соответствующий» центральный угол?

Снова смотрим:

Какое же правило?

Но! При этом важно, чтобы вписанный и центральный угол «смотрели» с одной стороны на дугу. Вот, например:

Как ни странно, голубой! Потому что дуга-то длинная, длиннее половины окружности! Вот и не путай никогда!

Какое же следствие можно вывести из «половинчатости» вписанного угла?

А вот, например:

Угол, опирающийся на диаметр

Ты уже успел заметить, что математики очень любят об одном и том же говорить разными словами? Зачем это им? Понимаешь, язык математики хоть и формальный, но живой, а поэтому, как и в обычном языке, каждый раз хочется сказать так, как удобнее. Ну вот, что такое «угол опирается на дугу» мы уже видели. И представь себе, та же самая картина называется «угол опирается на хорду». На какую? Да конечно на ту, которая стягивает эту дугу!

Когда же опираться на хорду удобнее, чем на дугу?

Ну, в частности, когда эта хорда - диаметр.

Для такой ситуации есть удивительно простое, красивое и полезное утверждение!

Смотри: вот окружность, диаметр и угол, который на него опирается.

ОКРУЖНОСТЬ И ВПИСАННЫЙ УГОЛ. КОРОТКО О ГЛАВНОМ

1. Основные понятия.

3. Измерения дуг и углов.

Угол величиной радиан - такой центральный угол, длина дуги которого равна радиусу окружности.

Это число, выражающее отношение длины полуокружности к радиусу.

Длина окружности радиуса равна.

4. Соотношение между величинами вписанного и центрального углов.

Глава 3. НЕКОТОРЫЕ ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ

§ 14. Общие сведения

При выполнении графических работ приходится решать многие задачи на построение. Наиболее встречающиеся при этом задачи - деление отрезков прямой, углов и окружностей на равные части, построение различных сопряжений прямых с дугами окружностей и дуг окружностей между собой. Сопряжением называют плавный переход дуги окружности в прямую или в дугу другой окружности.

Наиболее часто встречаются задачи на построение следующих сопряжений: двух прямых дугой окружности (скруглением углов); двух дуг окружностей прямой линией; двух дуг окружностей третьей дугой; дуги и прямой второй дугой.

Построение сопряжений связано с графическим определением центров и точек сопряжения. При построении сопряжения широко используются геометрические места точек (прямые, касательные к окружности; окружности, касательные друг к другу). Это объясняется тем, что они основаны на положениях и теоремах геометрии.

10. Вопросы для самопроверки

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

15. Какая плоская кривая называется эвольвентой?

15. Деление отрезка прямой

§ 15. Деление отрезка прямой

Чтобы разделить заданный отрезок АВ на две равные части, точки его начала и конца принимают за центры, из которых проводят дуги радиусом, по величине превышающим половину отрезка АВ. Дуги проводят до взаимного пересечения, где получают точки С и D. Линия, соединяющая эти точки, разделит отрезок в точке К на две равные части (рис. 30, а).

Чтобы разделить отрезок АВ на заданное количество равных участков п, под любым острым углом к АВ проводят вспомогательную прямую, на которой из общей заданной прямой точки откладывают п равных участков произвольной длины (рис. 30, б). Из последней точки (на чертеже - шестой) проводят прямую до точки В и через точки 5, 4, 3, 2, 1 проводят прямые, параллельные отрезку 6В. Эти прямые и отсекут на отрезке АВ заданное число равных отрезков (в данном случае 6).

Рис. 30 Деление заданного отрезка АВ на две равные части

Изображение:

16. Деление окружности

§ 16. Деление окружности

Чтобы разделить окружность на четыре равные части, проводят два взаимно перпендикулярных диаметра: на пересечении их с окружностью получаем точки, разделяющие окружность на четыре равные части (рис. 31, а).

Чтобы разделить окружность на восемь равных частей, дуги, равные четвертой части окружности, делят пополам. Для этого из двух точек, ограничивающих четверть дуги, как из центров радиусов окружности выполняют засечки за ее пределами. Полученные точки соединяют с центром окружностей и на пересечении их с линией окружности получают точки, делящие четвертные участки пополам, т. е. получают восемь равных участков окружности (рис. 31, б).

На двенадцать равных частей окружность делят следующим образом. Делят окружность на четыре части взаимно перпендикулярными диаметрами. Приняв точки пересечения диаметров с окружностью А, В, С, D за центры, величиной радиуса проводят четыре дуги до пересечения с окружностью. Полученные точки 1, 2, 3, 4, 5, 6, 7, 8 и точки А, В, С, D разделяют окружность на двенадцать равных частей (рис. 31, в).

Пользуясь радиусом, нетрудно разделить окружность и на 3, 5, 6, 7 равных участков.

Рис. 31 Пользуясь радиусом, нетрудно разделить окружность и на несколько равных участков.

Изображение:

17. Округление углов

§ 17. Скругление углов

Сопряжение двух пересекающихся прямых дугой заданного радиуса называют скруглением углов. Его выполняют следующим образом (рис. 32). Параллельно сторонам угла, образованного данными

прямыми, проводят вспомогательные прямые на расстоянии, равном радиусу. Точка пересечения вспомогательных прямых является центром дуги сопряжения.

Из полученного центра О опускают перпендикуляры к сторонам данного угла и на пересечении их получают точки сопряжения А а В. Между этими точками проводят сопрягающую дугу радиусом R из центра О.

Рис. 32 Сопряжение двух пересекающихся прямых дугой заданного радиуса называют скруглением углов

Изображение:

18. Сопряжение дуг окружностей прямой линией

§ 18. Сопряжение дуг окружностей прямой линией

При построении сопряжения дуг окружностей прямой линией можно рассмотреть две задачи: сопрягаемая прямая имеет внешнее или внутреннее касание. В первой задаче (рис. 33, а) из центра дуги

меньшего радиуса R1 проводят касательную вспомогательной окружности, проведенной радиусом R - RI. Ее точку касания Ко используют для построения точки сопряжения А на дуге радиуса R.

Для получения второй точки сопряжения А 1 на дуге радиуса R 1 проводят вспомогательную линию О 1 А 1 параллельно О А. Точками A и А 1 будет ограничен участок внешней касательной прямой.

Задача построения внутренней касательной прямой (рис. 33, б) решается, если вспомогательную окружность построить радиусом, равным R + R 1 ,

Рис. 33 Сопряжение дуг окружностей прямой линией

Изображение:

19. Сопряжение двух дуг окружностей третьей дугой

§ 19. Сопряжение двух дуг окружностей третьей дугой

При построении сопряжения двух дуг окружностей третьей дугой заданного радиуса можно рассмотреть три случая: когда сопрягающая дуга радиуса R касается заданных дуг радиусов R 1 и R 2 с внешней стороны (рис. 34, а); когда она создает внутреннее касание (рис. 34, б); когда сочетаются внутреннее и внешнее касания (рис. 34, в).

Построение центра О сопрягающей дуги радиуса R при внешнем касании осуществляется в следующем порядке: из центра О 1 радиусом, равным R + R 1 , проводят вспомогательную дугу, а из центра O 2 проводят вспомогательную дугу радиусом R + R 2 . На пересечении дуг получают центр О сопрягаемой дуги радиуса R, а на пересечении радиусом R + R 1 и R + R 2 с дугами окружностей получают точки сопряжения А и А 1 .

Построение центра О при внутреннем касании отличается тем, что из центра О 1 R - R 1 а из центра О 2 радиусом R - R 2 . При сочетании внутреннего и внешнего касания из центра О 1 проводят вспомогательную окружность радиусом, равным R - R 1 , а из центра О 2 - радиусом, равным R + R 2 .

20. Сопряжение дуги окружности и прямой линии второй дугой

§ 20. Сопряжение дуги окружности и прямой линии второй дугой

Здесь может быть рассмотрено два случая: внешнее сопряжение (рис. 35, а) и внутреннее (рис. 35, б). В том и в другом случае при построении сопрягающей дуги радиуса R центр сопряжения О лежит на пересечении геометрических мест точек, равно удаленных от прямой и дуги радиуса R на величину R 1 .

При построении внешнего сопряжения параллельно заданной прямой на расстоянии R 1 в сторону окружности проводят вспомогательную прямую, а из центра О радиусом,равным R + R 1 , - вспомогательную окружность, и на их пересечении получают точку О 1 - центр сопрягающей окружности. Из этого центра радиусом R проводят сопрягающую дугу между точками А и А 1 , построение которых видно из чертежа.

Построение внутреннего сопряжения отличается тем, что из центра О проводят вспомогательную дугу радиусом, равным R - R 1 .

Рис 34 Внешнее сопряжение дуги окружности и прямой линии второй дугой

Изображение:

Рис 35 Внутреннее сопряжение дуги окружности и прямой линии второй дугой

Изображение:

21. Овалы

§21. Овалы

Плавные выпуклые кривые, очерченные дугами окружностей разных радиусов, называют овалами. Овалы состоят из двух опорных окружностей с внутренними сопряжениями между ними.

Различают овалы трехцентровые и многоцентровые. При вычерчивании многих деталей, например кулачков, фланцев, крышек и других, контуры их очерчивают овалами. Рассмотрим пример построения овала по заданным осям. Пусть для четырехцентрового овала, очерченного двумя опорными дугами радиуса R и двумя сопрягающими дугами радиуса r , заданы большая ось АВ и малая ось CD. Величину радиусов R u r надо определить путем построений (рис. 36). Соединим концы большой и малой оси отрезком AС, на котором отложим разность СЕ большой и малой полуосей овала. Проведем перпендикуляр к середине отрезка AF, который пересечет большую и малую оси овала в точках О 1 и О 2 . Эти точки будут центрами сопрягающихся дуг овала, а точка сопряжения будет лежать на самом перпендикуляре.

Рис. 36 Плавные выпуклые кривые, очерченные дугами окружностей разных радиусов, называют овалами

22. Лекальные кривые

§ 22. Лекальные кривые

Лекальными называют плоские кривые, вычерченные с помощью лекал по предварительно построенным точкам. К лекальным кривым относят: эллипс параболу, гиперболу, циклоиду, синусоиду эвольвенту и др.

Эллипс представляет собой замкнутую плоскую кривую второго порядка. Она характеризуется тем, что сумма расстояний от любой ее


Рис. 37

точки до двух точек фокусов есть величина постоянная, равная большей оси эллипса. Построить эллипс можно несколькими способами. Например, можно построить эллипс по его большой АВ и малой CD осям (рис. 37, а). На осях эллипса как на диаметрах строят две окружности, которые можно разделить радиусами на несколько частей. Через точки деления большой окружности проводят прямые, параллельные малой оси эллипса, а через точки деления малой окружности - прямые, параллельные большой оси эллипса. Точки пересечения этих прямых и являются точками эллипса.

Можно привести пример построения эллипса по двум сопряженным диаметрам (рис. 37,б) MN и KL. Сопряженными два диаметра называют, если каждый из них делит пополам хорды, параллельные другому диаметру. На сопряженных диаметрах строят параллелограмм. Один из диаметров MN делят на равные части; на такие же части делят и стороны параллелограмма, параллельные другому диаметру, нумеруя их, как показано на чертеже. Из концов второго сопряженного диаметра KL через точки деления проводят лучи. В пересечении одноименных лучей получают точки эллипса.

Параболой называют незамкнутую кривую второго порядка, все точки которой равно удалены от одной точки - фокуса и от данной прямой - директрисы.

Рассмотрим пример построения параболы по ее вершине О и какой-либо точке В (рис. 38, а). С этой целью строят прямоугольник ОABC и делят его стороны на равные части, из точек деления проводят лучи. В пересечении одноименных лучей получают точки параболы.

Можно привести пример построения параболы в виде кривой, касательной прямой с заданными на них точками А и В (рис. 38, б). Стороны угла, образованного этими прямыми, делят на равные части и ну-

меруют точки деления. Одноименные точки соединяют прямыми. Параболу вычерчивают как огибающую этих прямых.

Гиперболой называют плоскую незамкнутую кривую второго порядка, состоящую из двух веток, концы которых удаляются в бесконечность, стремясь к своим асимптотам. Гипербола отличается тем, что каждая точка ее обладает особым свойством: разность ее расстояний от двух данных точек-фокусов есть величина постоянная, равная расстоянию между вершинами кривой. Если асимптоты гиперболы взаимно перпендикулярны, она называется равнобокой. Равнобокая гипербола широко применяется для построения различных диаграмм, когда задана своими координатами одна точка М (рис. 38, в). В этом случае через заданную точку проводят линии АВ и KL параллельно координатным осям. Из полученных точек пересечения проводят линии, параллельные координатным осям. В их пересечении получают точки гиперболы.

Сопряжение двух параллельных прямых

Заданы две параллельные прямые и на одной из них точка сопряжения М (рис. 2.19, а ). Требуется построить сопряжение.

  • 1) находят центр сопряжения и радиус дуги (рис. 2.19, б). Для этого из точки М восставляют перпендикуляр до пересечения с прямой в точке N. Отрезок MN делят пополам (см. рис. 2.7);
  • 2) из точки О – центра сопряжения радиусом ОМ = ON описывают дугу от точек сопряжения М и N (рис. 2.19, в ).

Рис. 2.19.

Даны окружность с центром О и точка А. Требуется провести из точки А касательную к окружности.

1. Точку А соединяют прямой с заданным центром О окружности.

Строят вспомогательную окружность диаметром, равным ОА (рис. 2.20, а ). Чтобы найти центр О 1, делят отрезок ОА пополам (см. рис. 2.7).

2. Точки M и N пересечения вспомогательной окружности с заданной – искомые точки касания. Точку А соединяют прямыми с точками М или N (рис. 2.20, б ). Прямая AM будет перпендикулярна прямой ОМ, так как угол АМО опирается на диаметр.

Рис. 2.20.

Проведение прямой, касательной к двум окружностям

Даны две окружности радиусов R и R 1. Требуется построить прямую, касательную к ним.

Различают два случая касания: внешнее (рис. 2.21, б ) и внутреннее (рис. 2.21, в ).

При внешнем касании построение выполняют следующим образом:

  • 1) из центра О проводят вспомогательную окружность радиусом, равным разности радиусов заданных окружностей, т.е. R – R 1 (рис. 2.21, а ). К этой окружности из центра О1 проводят касательную прямую Ο 1Ν. Построение касательной показано на рис. 2.20;
  • 2) радиус, проведенный из точки О в точку Ν, продолжают до пересечения в точке М с заданной окружностью радиуса R. Параллельно радиусу ОМ проводят радиус Ο 1Ρ меньшей окружности. Прямая, соединяющая точки сопряжений М и Р, – касательная к заданным окружностям (рис. 2.21, б ).

Рис. 2.21.

При внутреннем касании построение проводят аналогично, но вспомогательную окружность проводят радиусом, равным сумме радиусов R + R 1 (рис. 2.21, в ). Затем из центра О 1 проводят касательную к вспомогательной окружности (см. рис. 2.20). Точку N соединяют радиусом с центром О. Параллельно радиусу ON проводят радиус O1Р меньшей окружности. Искомая касательная проходит через точки сопряжений М и Р.

Сопряжение дуги и прямой дугой заданного радиуса

Даны дуга окружности радиуса R и прямая. Требуется соединить их дугой радиуса R 1.

  • 1. Находят центр сопряжения (рис. 2.22, а ), который должен находиться на расстоянии R 1 от дуги и от прямой. Поэтому проводят вспомогательную прямую, параллельную заданной прямой, на расстоянии, равном радиусу сопрягающей дуги R1) (рис. 2.22, а ). Раствором циркуля, равным сумме заданных радиусов R + R 1 описывают из центра О дугу до пересечения со вспомогательной прямой. Полученная точка О1 – центр сопряжения.
  • 2. По общему правилу находят точки сопряжения (рис. 2.22, б ): соединяют прямой центры сопрягаемых дуг O1 и О и опускают из центра сопряжения Ο 1 перпендикуляр на заданную прямую.
  • 3. Из центра сопряжения Οχ между точками сопряжения Μ и Ν проводят дугу, радиус которой R 1 (рис. 2.22, б ).

Рис. 2.22.

Сопряжение двух дуг дугой заданного радиуса

Даны две дуги, радиусы которых R 1 и R 2. Требуется построить сопряжение дугой, радиус которой задан.

Различают три случая касания: внешнее (рис. 2.23, а, б ), внутреннее (рис. 2.23, в ) и смешанное (см. рис. 2.25). Во всех случаях центры сопряжений должны быть расположены от заданных дуг на расстоянии радиуса дуги сопряжения.

Рис. 2.23.

Построение выполняют следующим образом:

Для внешнего касания:

  • 1) из центров Ο 1 и О2 раствором циркуля, равным сумме радиусов заданной и сопрягающей дуг, проводят вспомогательные дуги (рис. 2.23, а ); радиус дуги, проведенной из центра Ο 1, равен R 1 + R 3; а радиус дуги, проведенной из центра O2, равен R 2 + R 3. На пересечении вспомогательных дуг расположен центр сопряжения – точка O3;
  • 2) соединив прямыми точку Ο1 с точкой 03 и точку O2 с точкой O3, находят точки сопряжения M и N (рис. 2.23, б );
  • 3) из точки 03 раствором циркуля, равным R 3, между точками Μ и Ν описывают сопрягающую дугу.

Для внутреннего касания выполняют те же построения, но радиусы дуг берут равными разности радиусов заданной и сопрягающей дуг, т.е. R 4 – R 1 и R 4 – R 2. Точки сопряжения Р и К лежат на продолжении линий, соединяющих точку O4 с точками O1 и O2 (рис. 2.23, в ).

Для смешанного (внешнего и внутреннего ) касания (1-й случай):

  • 1) раствором циркуля, равным сумме радиусов R 1 и R 3, из точки O2, как из центра, проводят дугу (рис. 2.24, а);
  • 2) раствором циркуля, равным разности радиусов R 2 и R 3, из точки O2 проводят вторую дугу, пересекающуюся с первой в точке O3 (рис. 2.24, б );
  • 3) из точки О1 проводят прямую линию до точки O3, из второго центра (точка O2) проводят прямую через точку O3 до пересечения с дугой в точке М (рис. 2.24, в).

Точка O3 является центром сопряжения, точки М и N – точками сопряжения;

4) поставив ножку циркуля в точку O3, радиусом R 3 проводят дугу между точками сопряжения Μ и Ν (рис. 2.24, г ).

Рис. 2.24.

Для смешанного касания (2-й случай):

  • 1) две сопрягаемые дуги окружностей радиусов R 1 и R 2 (рис. 2.25);
  • 2) расстояние между центрами О i и O2 этих двух дуг;
  • 3) радиус R 3 сопрягающей дуги;

требуется:

  • 1) определить положение центра O3 сопрягающей дуги;
  • 2) найти на сопрягаемых дугах точки сопряжения;
  • 3) провести дугу сопряжения

Последовательность построения

Откладывают заданные расстояния между центрами Ο 1 и O2. Из центра О 1 проводят вспомогательную дугу радиусом равным сумме радиусов сопрягаемой дуги радиуса R 1 и сопрягающей дуги радиуса R 3, а из центра O2 проводят вторую вспомогательную дугу радиусом, равным разности радиусов R 3 и R 2, до пересечения с первой вспомогательной дугой в точке O3, которая будет искомым центром сопрягающей дуги (рис. 2.25).

Рис. 2.25.

Точки сопряжения находят по общему правилу, соединяя прямыми центры дуг O3 и O1, O 3 и O2. На пересечении этих прямых с дугами соответствующих окружностей находят точки М и N.

Лекальные кривые

В технике встречаются детали, поверхности которых ограничены плоскими кривыми: эллипсом, эвольвентной окружностью, спиралью Архимеда и др. Такие кривые линии нельзя вычертить циркулем.

Их строят по точкам, которые соединяют плавными линиями с помощью лекал. Отсюда название лекальные кривые.

Приведена на рис. 2.26. Каждая точка прямой, если ее катить без скольжения по окружности, описывает эвольвенту.

Рис. 2.26.

Рабочие поверхности зубьев большинства зубчатых колес имеют эвольвентное зацепление (рис. 2.27).

Рис. 2.27.

Спираль Архимеда изображена на рис. 2.28. Это плоская кривая, которую описывает точка, равномерно движущаяся от центра О по вращающемуся радиусу.

Рис. 2.28.

По спирали Архимеда нарезают канавку, в которую входят выступы кулачков самоцентрирующего трехкулачкового патрона токарного станка (рис. 2.29). При вращении конической шестерни, на обратной стороне которой нарезана спиральная канавка, кулачки сжимаются.

При выполнении этих (и других) лекальных кривых на чертеже можно для облегчения работы воспользоваться справочником.

Размеры эллипса определяются величиной его большой АВ и малой CD осей (рис. 2.30). Описывают две концентрические окружности. Диаметр большей равен длине эллипса (большой оси АВ ), диаметр меньшей – ширине эллипса (малой оси CD ). Делят большую окружность на равные части, например на 12. Точки деления соединяют прямыми, проходящими через центр окружностей. Из точек пересечения прямых с окружностями проводят линии, параллельные осям эллипса, как показано на рисунке. При взаимном пересечении этих линий получают точки, принадлежащие эллипсу, которые, соединив предварительно от руки тонкой плавной кривой, обводят с помощью лекала.

Рис. 2.29.

Рис. 2.30.

Практическое применение геометрических построений

Дано задание: выполнить чертеж ключа, показанного на рис. 2.31. Как это сделать?

Прежде чем начинать чертить, проводят анализ графического состава изображения, чтобы установить, какие случаи геометрических построений необходимо применить. На рис. 2.31 показаны эти построения.

Рис. 2.31.

Чтобы вычертить ключ, нужно провести взаимно перпендикулярные прямые, описать окружности, построить шестиугольники, соединив верхние и нижние их вершины прямыми, выполнить сопряжение дуг и прямых дугами заданного радиуса.

Какова последовательность этой работы?

Вначале проводят те линии, положение которых определено заданными размерами и не требует дополнительных построений (рис. 2.32, а ), т.е. проводят осевые и центровые линии, описывают по заданным размерам четыре окружности и соединяют концы вертикальных диаметров меньших окружностей прямыми линиями.

Рис. 2.32.

Дальнейшая работа по выполнению чертежа требует применения изложенных в п. 2.2 и 2.3 геометрических построений.

В данном случае нужно построить шестиугольники и выполнить сопряжение дуг с прямыми (рис. 2.32, б ). Это и будет второй этап работы.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png