являются вещество, люминесцирующее под действием заряженных частиц (сцинтиллятор), и фотоэлектронный умножитель (ФЭУ). Визуальные наблюдения световых вспышек (сцинтилляций) под действием ионизирующих частиц (a-частиц, осколков деления ядер) были основным методом ядерной физики в начале 20 в. (см. Спинтарископ ). Позднее Сцинтилляционный счётчик был полностью вытеснен ионизационными камерами и пропорциональными счётчиками . Его возвращение в ядерную физику произошло в конце 40-х гг., когда для регистрации сцинтилляций были использованы многокаскадные ФЭУ с большим коэффициентом усиления, способные зарегистрировать чрезвычайно слабые световые вспышки.

Принцип действия Сцинтилляционный счётчик состоит в следующем: заряженная частица, проходя через сцинтиллятор, наряду с ионизацией атомов и молекул возбуждает их. Возвращаясь в невозбуждённое (основное) состояние, атомы испускают фотоны (см. Люминесценция ). Фотоны, попадая на катод ФЭУ, выбивают электроны (см. Фотоэлектронная эмиссия ), в результате чего на аноде ФЭУ возникает электрический импульс, который далее усиливается и регистрируется (см. рис. ). Детектирование нейтральных частиц (нейтронов, g-квантов) происходит по вторичным заряженным частицам, образующимся при взаимодействии нейтронов и g-квантов с атомами сцинтиллятора.

В качестве сцинтилляторов используются различные вещества (твёрдые, жидкие, газообразные). Большое распространение получили пластики, которые легко изготовляются, механически обрабатываются и дают интенсивное свечение. Важной характеристикой сцинтиллятора является доля энергии регистрируемой частицы, которая превращается в световую энергию (конверсионная эффективность h). Наибольшими значениями hобладают кристаллические сцинтилляторы: , активированный , антрацен и . Др. важной характеристикой является время высвечивания t, которое определяется временем жизни на возбуждённых уровнях. Интенсивность свечения после прохождения частицы изменяется экспоненциально: , где 0 - начальная интенсивность. Для большинства сцинтилляторов t лежит в интервале 10 –9 - 10 –5 сек. Короткими временами свечения обладают пластики (табл. 1). Чем меньше t, тем более быстродействующим может быть сделан Сцинтилляционный счётчик

Для того чтобы световая вспышка была зарегистрирована ФЭУ, необходимо, чтобы спектр излучения сцинтиллятора совпадал со спектральной областью чувствительности фотокатода ФЭУ, а материал сцинтиллятора был прозрачен для собственного излучения. Для регистрации медленных нейтронов в сцинтиллятор добавляют или В. Для регистрации быстрых нейтронов используются водородсодержащие сцинтилляторы (см. Нейтронные детекторы ). Для спектрометрии g-квантов и электронов высокой энергии используют Nal (), обладающий большой плотностью и высоким эффективным атомным номером (см. Гамма-излучение ).

Сцинтилляционный счётчик изготавливают со сцинтилляторами разных размеров - объёмом от 1-2 мм 3 до 1-2 м 3 . Чтобы не «потерять» излученный свет, необходим хороший контакт ФЭУ со сцинтиллятором. В Сцинтилляционный счётчик небольших размеров сцинтиллятор непосредственно приклеивается к фотокатоду ФЭУ. Все остальные его стороны покрываются слоем светоотражающего вещества (например, , O 2). В Сцинтилляционный счётчик большого размера используют световоды (обычно из полированного органического стекла).

ФЭУ, предназначенные для Сцинтилляционный счётчик , должны обладать высокой эффективностью фотокатода (до 2,5%), высоким коэффициентом усиления (10 8 -10 8), малым временем собирания электронов (~ 10 –8 сек ) при высокой стабильности этого времени. Последнее позволяет достичь разрешающей способности по времени Сцинтилляционный счётчик £10 –9 сек. Высокий коэффициент усиления ФЭУ наряду с малым уровнем собственных шумов делает возможной регистрацию отдельных электронов, выбитых с фотокатода. Сигнал на аноде ФЭУ может достигать 100 в.

Табл. 1. - Характеристики некоторых твёрдых и жидких сцинтилляторов,

применяемых в сцинтилляционных счётчиках


Вещество

Плотность, г/см 3

Время высвечивания, t,

10 -9 сек.




Конверсионная эффективность h, % (для электронов)

Кристаллы

Антрацен 14 H 10

1,25

30

4450

4

Стильбен 14 H 12

1,16

6

4100

3

Na ()

3,67

250

4100

6

ZnS ()

4,09

11

4500

10

Csl ()

4,5

700

5600

2

Жидкости

Раствор р -терфенила в ксилоле (5 г/л) с добавлением РОРОР 1 (0,1 г/л)

0,86

2

3500

2

Раствор р -терфенила в толуоле (4 г/л) с добавлением РОРОР (0,1г/л)

0,86

2,7

4300

2,5

Пластики

Полистирол с добавлением р -терфенила (0,9%) и a- O 2 (0,05 весовых %)

1,06

2,2

4000

1,6

Поливинилтолуол с добавлением 3,4% р -терфенила и 0,1 весовых % РОРОР

1,1

3

4300

2

1 РОРОР - 1,4-ди--бензол. 2 O - 2-(1-нафтил)-5-фенилоксазол.

Достоинства Сцинтилляционный счётчик : высокая эффективность регистрации различных частиц (практически 100%); быстродействие; возможность изготовления сцинтилляторов разных размеров и конфигураций; высокая надёжность и относительно невысокая стоимость. Благодаря этим качествам Сцинтилляционный счётчик широко применяется в ядерной физике, физике элементарных частиц и космических лучей , в промышленности (радиационный контроль), дозиметрии , радиометрии , геологии, медицине и т. д. Недостатки Сцинтилляционный счётчик : малая чувствительность к частицам низких энергий (£ 1 кэв ), невысокая разрешающая способность по энергии (см. Сцинтилляционный спектрометр ).

Для исследования заряженных частиц малых энергий (< 0,1 Мэв ) и осколков деления ядер в качестве сцинтилляторов применяются газы (табл. 2). Газы обладают линейной зависимостью величины сигнала от энергии частицы в широком диапазоне энергий, быстродействием и возможностью менять тормозную способность изменением давления. Кроме того, источник может быть введён в объём газового сцинтиллятора. Однако газовые сцинтилляторы требуют высокой чистоты газа и специального ФЭУ с кварцевыми окнами (значительная часть излучаемого света лежит в ультрафиолетовой области).

Табл. 2. - Характеристики некоторых газов, применяемых в качестве

сцинтилляторов в сцинтилляционных счётчиках (при давлении 740 мм

рт. ст., для a-частиц с энергией 4,7 Мэв )


Газ

Время высвечивания t,

сек


Длина волны в максимуме спектра,

Конверсионная эффективность n, %

3900

2

Лит.: Бирке Дж., Сцинтилляционные счетчики, пер. с англ., М., 1955; Калашникова В. И., Козодаев М. С., Детекторы элементарных частиц, в кн.: Экспериментальные методы ядерной физики, М., 1966; Ритсон Д., Экспериментальные методы в физике высоких энергий, пер. с англ., М., 1964.

Статья про слово "Сцинтилляционный счётчик " в Большой Советской Энциклопедии была прочитана 24381 раз

Сцинтилляционный счетчик представляет собой сочетание сцинтиллятора (фосфора) и фотоэлектронного умножителя (ФЭУ). В комплект счетчика входят также источник электрического питания ФЭУ и радиотехническая аппаратура, обеспечивающая усиление и регистрацию импульсов ФЭУ. Иногда сочетание фосфора с ФЭУ производится через специальную оптическую систему (светопровод). Принцип действия сцинтилляционного счётчика состоит в следующем: заряженная частица, проходя через сцинтиллятор, наряду с ионизацией атомов и молекул возбуждает их. Возвращаясь в невозбуждённое (основное) состояние, атомы испускают фотоны. Излученный свет собирается – в спектральном диапазоне сцинтиллятора – на фотоприёмник. В качестве последнего часто служит фотоэлектронный умножитель (ФЭУ). Фотоэлектронный умножитель представляет собой стеклянный цилиндр, откаченный до остаточного давления не выше 10-6 мм рт. ст., в торце которого расположено прозрачное плоское окно, на поверхность которого со стороны эвакуируемого объёма нанесён тонкий слой вещества с малой работой выхода электронов (фотокатод), обычно на основе сурьмы и цезия. Далее в эвакуированном пространстве располагается серия электродов – динодов, на которые с помощью делителя напряжения от источника электропитания подаётся последовательно возрастающая разность потенциалов. Диноды ФЭУ изготавливаются из вещества также с малой работой выхода электронов. Они способны при бомбардировке их электронами испускать вторичные электроны в количествах, превышающих число первичных в несколько раз. Последний динод является анодом ФЭУ. Основным параметром ФЭУ является коэффициент усиления при определённом режиме питания. Обычно ФЭУ содержит девять и более динодов и усиление первичного тока достигает для различных умножителей величин 10 5 – 10 10 раз, что позволяет получать электрические сигналы амплитудой от вольт до десятков вольт.

Рис. 1.9.Блок-схема сцинтилляционного счётчика

Фотоны, попадая на фотокатод ФЭУ, в результате фотоэффекта выбивают электроны, в результате чего на аноде ФЭУ возникает электрический импульс, который далее усиливается динодной системы за счёт механизма вторичной электронной эмиссии. Анодный токовый сигнал ФЭУ – через усилитель или непосредственно - подается на вход измерительного прибора – счетчика импульсов, осциллографа, аналого- цифрового преобразователя и т.п. Амплитуда и длительность импульса на выходе определяются свойствами как сцинтиллятора, так и ФЭУ.



В ряде случаев на выходе усилителя наблюдается большое число импульсов (обычно малых по амплитуде), не связанных с регистрацией ядерных частиц, а именно, импульсов собственных шумов ФЭУ и ускорителя. Для устранения шумов между усилителем и счётчиком импульсов включается интегральный амплитудный дискриминатор, пропускающий лишь те импульсы, амплитуды которых больше некоторого значения порогового напряжения. Детектирование нейтральных частиц (нейтронов, γ-квантов) происходит по вторичным заряженным частицам, образующимся при взаимодействии нейтронов и γ-квантов с атомами сцинтиллятора.

Достоинства сцинтилляционного счётчика: высокая эффективность регистрации различных частиц; быстродействие; возможность изготовления сцинтилляторов разных размеров и конфигураций; высокая надёжность и относительно невысокая стоимость. Благодаря этим качествам сцинтилляционные счётчики широко применяется в ядерной физике (например, для измерения времени жизни возбуждённых состояний ядер, измерение сечения деления, регистрация осколков деления газовыми сцинтилляционными счётчиками), физике элементарных частиц и космических лучей (например, экспериментальное обнаружение нейтрино), в промышленности (гамма-дефектоскопия, радиационный контроль), дозиметрии (измерение потоков γ- излучений, испускаемых человеком и другими живыми организмами), радиометрии, геологии, медицине и т.д. Недостатки сцинтилляционного счётчика: малая чувствительность к частицам низких энергий (1 кэВ ), невысокая разрешающая способность по энергии. Для регистрации заряженных частиц сцинтилляционными счётчиком пригодны почти все фосфоры.Более удобны твёрдые фосфоры типа органических монокристаллов или пластиков. Основная трудность,возникающая при регистрации заряженных частиц и особенно тяжёлых, обеспечение ввода частиц в фосфор.



Фосфор, как правило, упаковывают в металлический контейнер, сквозь стенки которого частицы могут не пройти. Поэтому тяжёлые частицы обычно регистрируют более простыми детекторами – ионизационной камерой или пропорциональным счётчиком. Электроны регистрируют сцинтилляционными счётчиками в тех случаях, когда требуется хорошее разрешающее время. Основными фосфорами обычно являются органические монокристаллы антрацена, стильбена или пластики. Эффективность регистрации заряженных частиц сцинтилляционным счётчиком близка к 100%. Сцинтилляционные счётчики используют особенно широко для регистрации γ-излучения. Кроме хорошего разрешающего времени такой детектор обладает значительно большей, чем счётчик Гейгера- Мюллера, эффективностью к γ-квантам. В некоторых случаях удаётся обеспечить почти 100%-ную регистрацию γ-излучения. Эффективность сцинтилляционного счётчика к γ-квантам зависит от материала и толщины фосфора. Взаимодействие γ-квантов с веществом фосфора определяется плотностью электронов и энергией γ-квантов. Поэтому наиболее эффективно γ-излучение регистрируется сцинтилляционными счётчиками с фосфорами, имеющими большую плотность и высокий средний порядковый номер Z. К таким фосфорам относятся неорганические монокристаллы NaI(Tl), CsI(Tl), KI(Tl). С меньшей эффективностью γ- излучение регистрируется жидкими фосфорами и пластиками в результате взаимодействия нейтронов с атомными ядрами. Для регистрации медленных используются ядерные реакции расщепления лёгких ядер под действием нейтронов [10В(n, α)7Li , 6Li(n, α)3H и 3He(n, p)1H ] с регистрацией a-частиц и протонов; деления тяжёлых ядер с регистрацией осколков деления; радиационный захват нейтронов ядрами (n, γ) с регистрацией γ-квантов, а также возбуждения искусственной радиоактивности. Для регистрации a-частиц, протонов и осколков деления применяются ионизационные камеры и пропорциональные счётчики, которые заполняют газообразным BF3 и др. газами, содержащими В или 3H, либо покрывают их стенки тонким слоем твёрдых В, Li или делящихся веществ. Конструкция и размеры таких камер и счётчиков разнообразны. Пропорциональные счётчики могут достигать 50 мм в диаметре и 2 м длины. Наибольшей эффективностью к тепловым нейтронам обладают нейтронные детекторы, содержащие 10B или 3He. Для регистрации медленных нейтронов используются также сцинтилляционные счётчики (на кристаллах LiI с примесью Eu, на сцинтиллирующих литиевых стеклах, либо смеси борсодержащих веществ и сцинтиллятора ZnS). Эффективность регистрации быстрых нейтронов перечисленными детекторами в сотни раз меньше, поэтому быстрые нейтроны предварительно замедляют в парафиновом блоке, окружающем нейтронный детектор. Специально подобранные форма и размеры блоков позволяют получить практически постоянную эффективность регистрации нейтронов в диапазоне энергии от нескольких кэВ до 20 МэВ (всеволновой счётчик). При непосредственном детектировании нейтронов с энергиями ~ 100 кэВ обычно используется упругое рассеяние нейтронов в водороде или гелии или регистрируются ядра отдачи. Так как энергия последних зависит от энергии нейтронов, то такие нейтронные детекторы позволяют измерять энергетический спектр нейтронов. Сцинтилляционные нейтронные детекторы также могут регистрировать быстрые нейтроны по протонам отдачи в органических и водородсодержащих жидких сцинтилляторах. Некоторые тяжёлые ядра, например 238U и 232Th, делятся только под действием быстрых нейтронов. Это позволяет создавать пороговые детекторы, служащие для регистрации быстрых нейтронов на фоне тепловых._Для регистрации продуктов ядерных реакций нейтронов с ядрами В и Li, протонов отдачи и осколков деления используются также ядерные фотографические эмульсии. Этот метод особенно удобен в дозиметрии, так как позволяет определить суммарное число нейтронов за время облучения. При делении ядер энергия осколков столь велика, что они производят заметные механические разрушения. На этом основан один из способов их обнаружения: осколки деления замедляются в стекле, которое затем травится плавиковой кислотой; в результате следы осколков можно наблюдать под микроскопом. Возбуждение искусственной радиоактивности под действием нейтронов используется для регистрации нейтронов, особенно при измерениях плотности потока нейтронов, так как число распадов (активность) пропорционально потоку нейтронов, прошедшему через вещество (измерение активности можно производить после прекращения облучения нейтронами). Существует большое количество различных изотопов, применяемых в качестве радиоактивных индикаторов нейтронов разных энергий E . В тепловой области энергий наибольшее распространение имеют 55Mn, 107Ag, 197Au: для регистрации резонансных нейтронов применяют 55Mn (E = 300 эВ), 59Co (E =100 эВ), 103Rh, 115In (E = 1,5 эВ), 127I (E = 35 эВ), 107Ag, 197Au (E = 5 эВ). В области больших энергий используют пороговые детекторы 12C (E = 20 МэВ), 32S (E = 0,9 МэВ) и 63Cu (E = 10 МэВ)._

1.1 Принцип работы сцинтилляционного счётчика

Сцинтилляционный счетчик представляет собой сочетание сцинтиллятора (фосфора) и фотоэлектронного умножителя (ФЭУ). В комплект счетчика входят также источник электрического питания ФЭУ и радиотехническая аппаратура, обеспечивающая усиление и регистрацию импульсов ФЭУ. Иногда сочетание фосфора с ФЭУ производится через специальную оптическую систему (светопровод).

Принцип действия сцинтилляционного счётчика состоит в следующем: заряженная частица, проходя через сцинтиллятор, наряду с ионизацией атомов и молекул возбуждает их. Возвращаясь в невозбуждённое (основное) состояние, атомы испускают фотоны. Излученный свет собирается – в спектральном диапазоне сцинтиллятора – на фотоприёмник. В качестве последнего часто служит фотоэлектронный умножитель

Фотоэлектронный умножитель представляет собой стеклянный цилиндр, откаченный до остаточного давления не выше 10-6 мм рт. ст., в торце которого расположено прозрачное плоское окно, на поверхность которого со стороны эвакуируемого объёма нанесён тонкий слой вещества с малой работой выхода электронов (фотокатод), обычно на основе сурьмы и цезия. Далее в эвакуированном пространстве располагается серия электродов – динодов, на которые с помощью делителя напряжения от источника электропитания подаётся последовательно возрастающая разность потенциалов. Диноды ФЭУ изготавливаются из вещества также с малой работой выхода электронов. Они способны при бомбардировке их электронами испускать вторичные электроны в количествах, превышающих число первичных в несколько раз. Последний динод является анодом ФЭУ. Основным параметром ФЭУ является коэффициент усиления при определённом режиме питания. Обычно ФЭУ содержит девять и более динодов и усиление первичного тока достигает для различных умножителей величин 105 – 1010 раз, что позволяет получать электрические сигналы амплитудой от вольт до десятков вольт.

Рис. 1. Блок-схема сцинтилляционного счётчика.

Фотоны, попадая на фотокатод ФЭУ, в результате фотоэффекта выбивают электроны, в результате чего на аноде ФЭУ возникает электрический импульс, который далее усиливается динодной системы за счёт механизма вторичной электронной эмиссии. Анодный токовый сигнал ФЭУ – через усилитель или непосредственно - подается на вход измерительного прибора – счетчика импульсов, осциллографа, аналогоцифрового преобразователя и т.п. Амплитуда и длительность импульса на выходе определяются свойствами как сцинтиллятора, так и ФЭУ.

В ряде случаев на выходе усилителя наблюдается большое число импульсов (обычно малых по амплитуде), не связанных с регистрацией ядерных частиц, а именно, импульсов собственных шумов ФЭУ и ускорителя. Для устранения шумов между усилителем и счётчиком импульсов включается интегральный амплитудный дискриминатор, пропускающий лишь те импульсы, амплитуды которых больше некоторого значения порогового напряжения.

Детектирование нейтральных частиц (нейтронов, γ -квантов) происходит по вторичным заряженным частицам, образующимся при взаимодействии нейтронов и γ -квантов с атомами сцинтиллятора.

Сцинтилляционный счётчик, прибор для регистрации ядерных излучений и элементарных частиц (протонов, нейтронов, электронов, g -квантов, мезонов и т. д.), основными элементами которого являются вещество, люминесцирующее под действием заряженных частиц (сцинтиллятор), и фотоэлектронный умножитель (ФЭУ). Визуальные наблюдения световых вспышек (сцинтилляций) под действием ионизирующих частиц (a -частиц, осколков деления ядер) были основным методом ядерной физики в начале 20 в. (см. Спинтарископ ). Позднее С. с. был полностью вытеснен ионизационными камерами и пропорциональными счётчиками . Его возвращение в ядерную физику произошло в конце 40-х гг., когда для регистрации сцинтилляций были использованы многокаскадные ФЭУ с большим коэффициентом усиления, способные зарегистрировать чрезвычайно слабые световые вспышки.

Принцип действия С. с. состоит в следующем: заряженная частица, проходя через сцинтиллятор, наряду с ионизацией атомов и молекул возбуждает их. Возвращаясь в невозбуждённое (основное) состояние, атомы испускают фотоны (см. Люминесценция ). Фотоны, попадая на катод ФЭУ, выбивают электроны (см. Фотоэлектронная эмиссия ), в результате чего на аноде ФЭУ возникает электрический импульс, который далее усиливается и регистрируется (см. рис. ). Детектирование нейтральных частиц (нейтронов, g -квантов) происходит по вторичным заряженным частицам, образующимся при взаимодействии нейтронов и g -квантов с атомами сцинтиллятора.

В качестве сцинтилляторов используются различные вещества (твёрдые, жидкие, газообразные). Большое распространение получили пластики, которые легко изготовляются, механически обрабатываются и дают интенсивное свечение. Важной характеристикой сцинтиллятора является доля энергии регистрируемой частицы, которая превращается в световую энергию (конверсионная эффективность h ). Наибольшими значениями h обладают кристаллические сцинтилляторы: NaI, активированный Tl , антрацен и ZnS. Др. важной характеристикой является время высвечивания t , которое определяется временем жизни на возбуждённых уровнях. Интенсивность свечения после прохождения частицы изменяется экспоненциально: , где I 0 - начальная интенсивность. Для большинства сцинтилляторов t лежит в интервале 10 –9 - 10 –5 сек. Короткими временами свечения обладают пластики (табл. 1). Чем меньше t , тем более быстродействующим может быть сделан С. с.

Для того чтобы световая вспышка была зарегистрирована ФЭУ, необходимо, чтобы спектр излучения сцинтиллятора совпадал со спектральной областью чувствительности фотокатода ФЭУ, а материал сцинтиллятора был прозрачен для собственного излучения. Для регистрации медленных нейтронов в сцинтиллятор добавляют Li или В. Для регистрации быстрых нейтронов используются водородсодержащие сцинтилляторы (см. Нейтронные детекторы ). Для спектрометрии g -квантов и электронов высокой энергии используют Nal (Tl), обладающий большой плотностью и высоким эффективным атомным номером (см. Гамма-излучение ).

С. с. изготавливают со сцинтилляторами разных размеров - объёмом от 1-2 мм 3 до 1-2 м 3 . Чтобы не «потерять» излученный свет, необходим хороший контакт ФЭУ со сцинтиллятором. В С. с. небольших размеров сцинтиллятор непосредственно приклеивается к фотокатоду ФЭУ. Все остальные его стороны покрываются слоем светоотражающего вещества (например, MgO, TiO 2). В С. с. большого размера используют световоды (обычно из полированного органического стекла).

ФЭУ, предназначенные для С. с., должны обладать высокой эффективностью фотокатода (до 2,5%), высоким коэффициентом усиления (10 8 -10 8), малым временем собирания электронов (10 –8 сек ) при высокой стабильности этого времени. Последнее позволяет достичь разрешающей способности по времени С. с. £ 10 –9 сек. Высокий коэффициент усиления ФЭУ наряду с малым уровнем собственных шумов делает возможной регистрацию отдельных электронов, выбитых с фотокатода. Сигнал на аноде ФЭУ может достигать 100 в.

Табл. 1. - Характеристики некоторых твёрдых и жидких сцинтилляторов,

применяемых в сцинтилляционных счётчиках

Вещество

Плотность, г/см 3

Время высвечивания, t ,

10 -9 сек.

Конверсионная эффективность h , % (для электронов)

Кристаллы

Антрацен C 14 H 10

Стильбен C 14 H 12

Жидкости

Раствор р -терфенила в ксилоле (5 г/л) с добавлением РОРОР 1 (0,1 г/л)

Раствор р -терфенила в толуоле (4 г/л) с добавлением РОРОР (0,1г/л)

Пластики

Полистирол с добавлением р -терфенила (0,9%) и a-NPO 2 (0,05 весовых %)

Поливинилтолуол с добавлением 3,4% р -терфенила и 0,1 весовых % РОРОР

1 РОРОР - 1,4-ди--бензол. 2 NPO - 2-(1-нафтил)-5-фенилоксазол.

Достоинства С. с.: высокая эффективность регистрации различных частиц (практически 100%); быстродействие; возможность изготовления сцинтилляторов разных размеров и конфигураций; высокая надёжность и относительно невысокая стоимость. Благодаря этим качествам С. с. широко применяется в ядерной физике, физике элементарных частиц и космических лучей , в промышленности (радиационный контроль), дозиметрии , радиометрии , геологии, медицине и т. д. Недостатки С. с.: малая чувствительность к частицам низких энергий (£ 1 кэв ), невысокая разрешающая способность по энергии (см. Сцинтилляционный спектрометр ).

Для исследования заряженных частиц малых энергий (< 0,1 Мэв ) и осколков деления ядер в качестве сцинтилляторов применяются газы (табл. 2). Газы обладают линейной зависимостью величины сигнала от энергии частицы в широком диапазоне энергий, быстродействием и возможностью менять тормозную способность изменением давления. Кроме того, источник может быть введён в объём газового сцинтиллятора. Однако газовые сцинтилляторы требуют высокой чистоты газа и специального ФЭУ с кварцевыми окнами (значительная часть излучаемого света лежит в ультрафиолетовой области).

Табл. 2. - Характеристики некоторых газов, применяемых в качестве

сцинтилляторов в сцинтилляционных счётчиках (при давлении 740 мм

рт. ст., для a -частиц с энергией 4,7 Мэв )

Время высвечивания t ,

Длина волны в максимуме спектра,

Конверсионная эффективность n, %

3× 10 –9

Лит.: Бирке Дж., Сцинтилляционные счетчики, пер. с англ., М., 1955; Калашникова В. И., Козодаев М. С., Детекторы элементарных частиц, в кн.: Экспериментальные методы ядерной физики, М., 1966; Ритсон Д., Экспериментальные методы в физике высоких энергий, пер. с англ., М., 1964.

Большая Советская Энциклопедия М.: "Советская энциклопедия", 1969-1978

Сцинтилляционные счетчики

В сцинтилляционном счетчике регистрация заряженной частицы связана с возбуждением атомов и молекул вдоль ее траектории. Возбужденные атомы, живущие короткое время, переходят в основное состояние, испуская электромагнитное излучение. У ряда прозрачных веществ, называемых фосфорами или люминофорами, часть спектра этого излучения приходится на световую область. Прохождение заряженной частицы через такое вещество вызывает вспышку света. Для увеличения выхода света и уменьшения его поглощения в фосфоре в последний добавляют так называемые активаторы. Вид активатора указывают в скобках после обозначения фосфора. Например, кристалл NaI, активированный таллием, обозначают NaI(Tl).

Попадание быстрой заряженной частицы в фосфор вызывает световую вспышку - сцинтилляцию. Последняя преобразуется в электрический импульс и усиливается в 10 5 -10 6 раз фотоэлектрическим умножителем (ФЭУ). Подобное сочетание двух элементов - фосфора и ФЭУ-используют в сцинтилляционных счетчиках (рис. 5.7).

Рис. 5.7. Принципиальная схема сцинтилляционного счётчика.

1 – кристалл NaI; 2 – фотокатод; 3 – фокусирующая электронная линза;

4 – эмиттеры (диноды); 5 - анод

Регистрация γ-квантов в сцинтилляционном счетчике происходит благодаря вторичным электронам и позитронам, образующимся при поглощении γ-квантов фосфором. Поскольку фосфоры обладают хорошей оптической прозрачностью, обеспечивающей сбор света на фотокатод ФЭУ со значительного объема фосфора, для регистрации γ-квантов можно применять фосфоры большой толщины. Это обеспечивает высокую эффективность регистрации γ-квантов сцинтилляционным счетчиком, на порядок и более превышающую эффективность газонаполненных счетчиков.

Фотоэлектронные умножители состоят из фотокатода, умножающих электродов (динодов) ианода (см. рис. 5.7). Потенциал каждого последующего электрода на некоторую величину (около 10 В) превышает потенциал предыдущего, что обеспечивает ускорение электронов между ними. Фотоны, поступающие из фосфора на фотокатод, выбивают из него несколько десятков или сотен электронов, которые фокусируются и ускоряются электрическим полем и бомбардируют первый динод. При торможении в диноде каждый ускоренный электрон выбивает до 5-10 вторичных электронов. Такой процесс, повторяясь на каждом последующем диноде, обеспечивает умножение электронов до многих миллионов раз.

Сцинтилляционные счетчики в ядерной геологии и геофизике используют для регистрации γ-квантов, реже нейтронов и β-частиц. При регистрации тяжелых заряженных частиц возникает трудность с обеспечением их ввода в фосфор. Поэтому для регистрации α-частиц чаще всего используют ионизационные камеры или торцовые счетчики. Лишь для регистрации α-активности эманации широко применяют сцинтилляционную камеру, внутренние стенки которой покрыты ZnS (Ag) .

Из-за термоэлектронной эмиссии фотокатода и первых динодов на выходе даже полностью затемненного ФЭУ возникает некоторый темновой ток, создающий небольшие фоновые импульсы. Для их отсечения в схему регистрации вводят дискриминаторы.

Особенности использования сцинтилляционных счетчиков для спектрометрии γ-излучения. При регистрации γ-квантов сцинтилляционным счетчиком амплитуда импульса на его выходе пропорциональна энергии электрона и позитрона, образовавшихся при взаимодействии кванта с сцинтиллятором. Если при фотоэффекте энергия фотоэлектрона равна энергии кванта (за вычетом небольшой величины - энергии связи К -электрона), то электрону при комптоновском рассеянии и паре электрон-позитрон в эффекте образования пар передается лишь часть энергии кванта. При комптон-эффекте в зависимости от угла рассеяния γ-кванта энергия электрона может меняться в широких пределах (рис. 5.8.), а при эффекте образования пар - кинетическая энергия пары на 1,02 МэВ меньше, чем энергия кванта.

Рис. 5.8. Упрощенная схема распределения энергии вторичных

электронов в люминофоре при: а – фотоэффекте, б – комптоновском рассеянии,

в – образовании пар; N - число импульсов, Е – энергия вторичных электронов.

В результате спектр энергии вторичных частиц, образованных в сцинтилляторе монохроматическим пучком γ-квантов имеет сложный вид. Появление дополнительных линий Е v = 0,51 МэВ и Е у при эффекте образования пар обусловлено тем, что в ряде случаев один или даже оба γ-кванта с энергией 0,51 МэВ, образующихся при аннигиляции позитрона, поглощаются в сцинтилляторе в результате фотоэффекта и вспышка от этих фотоэлектродов сливается со вспышкой от первичной пары электрон-позитрон. Максимальная энергия комптоновского электрона

. (5.17)

Реальное амплитудное распределение импульсов на выходе ФЭУ более расплывчатое, чем спектр электронов на рис. 5.8 из-за статистического характера процессов в фосфоре и ФЭУ. Оно не дискретное, а непрерывное. Типичный аппаратурный спектр изотопа 24 Na (Е Y =1,38 и 2,76 МэВ) приведен на рис.5.9.

Для линии 1,38 МэВ вклад эффекта образования пар ничтожен и соответствующие пики почти незаметны, образуется лишь пик 1,38 МэВ, обусловленный фотоэффектом, а также менее четкий комптоновский пик с энергией 1,17 МэВ. Для линии 2,76 МэВ наблюдаются три пика с энергиями 1,74, 2,25 и 2,76 МэВ. Два первых пика обязаны эффекту образования пар, а последний пик (2,76 МэВ) трем процессам: фотоэффекту, эффекту образования пар, сопровождающемуся поглощением обоих квантов аннигиляции; комптон-эффекту, когда рассеянный квант также поглощается фосфором в результате фотоэффекта. Во всех трех процессах в световую энергию превращается вся энергия кванта. Поэтому этот пик называют пиком полного поглощения.

Форма пика полного поглощения близка к гауссовой кривой. Отношение μ=ΔЕ/Е полуширины пика ΔЕ на половине его высоты к средней энергии Е называют амплитудным разрешением счетчика. Чем меньше μ, тем лучше спектрометр. Значение μ обычно растет с уменьшением энергии и для хороших сцинтилляционных спектрометров при Е v = l,33 МэВ (60 Со) составляет 6%.

Сцинтилляционные счетчики обеспечивают гораздо большую эффективность регистрации γ-квантов (до 30-50 % и более), чем газоразрядные, и дают возможность изучения спектрального состава излучения. К преимуществам сцинтилляционных счетчиков относится также более низкий уровень их собственного и космического фона.



Рис. 5.9. Аппаратурный спектр γ-излучения , содержащий линии

с энергией 1,38 и 2,76 МэВ.

Однако сцинтилляционные счетчики более сложны и требуют более квалифицированного обслуживания, чем разрядные. Это обусловлено большим влиянием температуры на световыход фосфоров, несравненно более высокими требованиями к стабилизации источника питания, а также более сильным изменением характеристик сцинтилляционных счетчиков во времени.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png