Масс-спектрометрия (масс-спектроскопия, масс-спектрография, масс-спектральный анализ, масс-спектрометрический анализ) - метод исследования вещества, основанный на определении отношения массы к заряду ионов, образующихся при ионизации представляющих интерес компонентов пробы. Один из мощнейших способов качественной идентификации веществ, допускающий также и количественное определение. Можно сказать, что масс-спектрометрия - это «взвешивание» молекул, находящихся в пробе.

История масс-спектрометрии ведётся с основополагающих опытов Дж. Дж. Томсона в начале XX века. Окончание «-метрия» в названии метода появилось после повсеместного перехода от детектирования заряженных частиц при помощи фотопластинок к электрическим измерениям ионных токов.

Особенно широкое применение масс-спектрометрия находит в анализе органических веществ, поскольку обеспечивает уверенную идентификацию как относительно простых, так и сложных молекул. Единственное общее требование - чтобы молекула поддавалась ионизации. Однако к настоящему времени придумано столько способов ионизации компонентов пробы, что масс-спектрометрию можно считать практически всеохватным методом.

Почти все масс-спектрометры - это вакуумные приборы, поскольку ионы очень нестабильны в присутствии посторонних молекул. Однако существуют некоторые приборы, которые можно условно отнести к масс-спектрометрам, но в которых используется не вакуум, а поток особого чистого газа.

Масс-спектр - это зависимость интенсивности ионного тока (количества вещества) от отношения массы к заряду (природы вещества). Поскольку масса любой молекулы складывается из масс составляющих её атомов, масс-спектр всегда дискретен, хотя при низком разрешении масс-спектрометра пики разных масс могут перекрываться или даже сливаться. Природа анализируемого вещества, особенности метода ионизации и вторичные процессы в масс-спектрометре могут влиять на масс-спектр (см. метастабильные ионы, градиент ускоряющего напряжения по местам образования ионов, неупругое рассеивание). Так, ионы с одинаковыми отношениями массы к заряду могут оказаться в разных частях спектра и даже сделать часть его непрерывным.

Большинство небольших молекул при ионизации приобретает только один положительный или отрицательный заряд. Чем больше молекула, тем больше вероятность того, что во время ионизации она превратится в многозарядный ион. Поэтому особенно сильно данный эффект проявляется в отношении крайне больших молекул, например, белков, нуклеиновых кислот и полимеров. При некоторых видах ионизации (например, электронный удар) молекула может распадаться на несколько характерных частей, что даёт дополнительные возможности идентификации и исследования структуры неизвестных веществ.

Точное определение массы анализируемой молекулы позволяет определить её элементный состав (см.: элементный анализ). Масс-спектрометрия также позволяет получить важную информацию об изотопном составе анализируемых молекул.

История масс-спектрометрии

  • 1912 год - Дж. Дж. Томсон создает первый масс-спектрограф и получает масс-спектры молекул кислорода, азота, угарного газа, углекислого газа и фосгена.
  • 1913 год - С помощью своего масс-спектрографа Дж. Дж. Томсон открывает изотопы неона: неон-20 и неон-22.
  • 1918 год - Артур Демпстер строит первый масс-спектрограф.
  • 1919 год - Фрэнсис Астон, независимо от Демпстера, строит свой первый масс-спектрограф и начинает исследования изотопов. Этот прибор имел разрешающую способность около 130.
  • 1923 год - Астон измеряет с помощью масс-спектрометра дефект массы.
  • 1932 год - Кеннет Бейнбридж строит масс-спектрометр с разрешающей способностью 600 и чувствительностью 1 часть на 10 тыс.
  • 1936 год - Артур Демпстер, Кеннет Бэйнбридж (англ. Kenneth Tompkins Bainbridge) и Йозеф Маттаух (англ. Josef Heinrich Elizabeth Mattauch) конструируют масс-спектрограф с двойной фокусировкой. Демпстер разрабатывает искровой источник ионизации.
  • 1940 год - Альфред Нир с помощью препаративной масс-спектрометрии выделяет уран-235.
  • 1940 год - Альфред Нир создает первый надёжный источник электронного удара, применив ионизационную камеру.
  • 1942 год - Лоуренс запускает «калутрон» - промышленную установку по разделению изотопов урана, основанную на магнитно-секторном масс-спектрометре.
  • 1946 год - Уильям Стивенс предлагает концепцию время-пролётного масс-спектрометра.
  • 1948 год - Камероном и Эггерсом создан первый масс-спектрометр с время-пролётным масс-анализатором.
  • 1952 год - Тальрозе и Любимова впервые наблюдают сигнал метония CH5+ в ионном источнике электронного удара при повышенном давлении метана в ионизационной камере (в 1966 Мансон и Филд применят это открытие для аналитических целей и создадут ионный источник с химической ионизацией).
  • 1953 год - Пауль патентует квадрупольный масс-анализатор и ионную ловушку.
  • 1956 год - МакЛафферти и Голке создают первый газовый хромато-масс-спектрометр.
  • 1966 год - Мансон и Филд создают ионный источник с химической ионизацией.
  • 1972 год - Каратаев и Мамырин изобретают время-пролётный масс-анализатор с фокусировкой, значительно улучшающий разрешение анализатора.
  • 1974 год - Первый жидкостный хромато-масс-спектрометр создан Арпино, Болдуином и МакЛафферти
  • 1981 год - Барбер, Бордоли, Седжвик и Тайлор создают ионизатор с бомбардировкой быстрыми атомами (FAB).
  • 1982 год - Первый масс-спектр целого белка (инсулин) с помощью бомбардировки быстрыми атомами (FAB).
  • 1983 год - Бланки и Бестал изобретают термоспрей.
  • 1984 год - Л. Н. Галль, а затем Фенн публикуют работы по методу электроспрей.
  • 1987 год - Карас, Бахман, Бар и Хилленкамп изобретают ионизацию лазерной десорбцией при содействии матрицы (MALDI).
  • 1999 год - Александр Макаров (англ.)русск. изобретает электростатическую ионную ловушку «Орбитрэп».

Принцип работы и устройство масс-спектрометра

Источники ионов

Первое, что надо сделать для того, чтобы получить масс-спектр, - превратить нейтральные молекулы и атомы, составляющие любое органическое или неорганическое вещество, в заряженные частицы - ионы. Этот процесс называется ионизацией и по-разному осуществляется для органических и неорганических веществ. Вторым необходимым условием является перевод ионов в газовую фазу в вакуумной части масс спектрометра. Глубокий вакуум обеспечивает беспрепятственное движение ионов внутри масс-спектрометра, а при его отсутствии ионы рассеются и рекомбинируют (превратятся обратно в незаряженные частицы).

Условно способы ионизации органических веществ можно классифицировать по фазам, в которых находятся вещества перед ионизацией.

Газовая фаза электронная ионизация (EI) химическая ионизация (CI) электронный захват (EC) ионизация в электрическом поле (FI) Жидкая фаза термоспрей ионизация при атмосферном давлении (AP)

  • электроспрей (APESI)
  • химическая ионизация при атмосферном давлении (APCI)
  • фотоионизация при атмосферном давлении (APPI)
Твёрдая фаза прямая лазерная десорбция - масс-спектрометрия (LDMS) матрично-активированная лазерная десорбция/ионизация (MALDI) масс-спектрометрия вторичных ионов (SIMS) бомбардировка быстрыми атомами (FAB) десорбция в электрическом поле (FD) плазменная десорбция (PD)

В неорганической химии для анализа элементного состава применяются жёсткие методы ионизации, так как энергии связи атомов в твёрдом теле гораздо больше и значительно более жёсткие методы необходимо использовать для того, чтобы разорвать эти связи и получить ионы.

  • ионизация в индуктивно-связанной плазме (ICP)
  • термоионизация или поверхностная ионизация
  • ионизация в тлеющем разряде и искровая ионизация (см. искровой разряд)
  • ионизация в процессе лазерной абляции

Исторически первые методы ионизации были разработаны для газовой фазы. К сожалению, очень многие органические вещества невозможно испарить, то есть перевести в газовую фазу, без разложения. А это значит, что их нельзя ионизовать электронным ударом. Но среди таких веществ почти всё, что составляет живую ткань (белки, ДНК и т. д.), физиологически активные вещества, полимеры, то есть всё то, что сегодня представляет особый интерес. Масс-спектрометрия не стояла на месте и последние годы были разработаны специальные методы ионизации таких органических соединений. Сегодня используются, в основном, два из них - ионизация при атмосферном давлении и её подвиды - электроспрей (ESI), химическая ионизация при атмосферном давлении (APCI) и фотоионизация при атмосферном давлении (APPI), а также ионизация лазерной десорбцией при содействии матрицы (MALDI).

Масс-анализаторы

Полученные при ионизации ионы с помощью электрического поля переносятся в масс-анализатор. Там начинается второй этап масс- спектрометрического анализа - сортировка ионов по массам (точнее по отношению массы к заряду, или m/z). Существуют следующие типы масс-анализаторов:

Непрерывные масс-анализаторы

  • Магнитный и электростатический секторный масс-анализатор (англ. Sector instrument)
  • Квадрупольный масс-анализатор (англ. Quadrupole mass analyzer)
импульсные масс-анализаторы
  • Времяпролётный масс-анализатор (англ. Time-of-flight mass spectrometry)
  • Ионная ловушка (англ. Ion trap)
  • Квадрупольная линейная ловушка (англ. Quadrupole ion trap)
  • Масс-анализатор ионно-циклотронного резонанса с Фурье-преобразованием (англ. Fourier transform ion cyclotron resonance)
  • Орбитрэп (англ. Orbitrap)

Разница между непрерывными и импульсными масс-анализаторами заключается в том, что в первых ионы поступают непрерывным потоком, а во вторых - порциями, через определённые интервалы времени.

Масс-спектрометр может иметь два масс-анализатора. Такой масс-спектрометр называют тандемным. Тандемные масс спектрометры применяются, как правило, вместе с «мягкими» методами ионизации, при которых не происходит фрагментации ионов анализируемых молекул (молекулярных ионов). Таким образом первый масс-анализатор анализирует молекулярные ионы. Покидая первый масс-анализатор, молекулярные ионы фрагментируются под действием соударений с молекулами инертного газа или излучения лазера, после чего их фрагменты анализируются во втором масс-анализаторе. Наиболее распространёнными конфигурациями тандемных масс спектрометров являются квадруполь-квадрупольная и квадруполь-времяпролётная.

Детекторы

Последним элементом описываемого нами упрощённого масс-спектрометра, является детектор заряженных частиц. Первые масс-спектрометры использовали в качестве детектора фотопластинку. Сейчас используются динодные вторично-электронные умножители, в которых ион, попадая на первый динод, выбивает из него пучок электронов, которые в свою очередь, попадая на следующий динод, выбивают из него ещё большее количество электронов и т. д. Другой вариант - фотоумножители, регистрирующие свечение, возникающее при бомбардировке ионами люминофора. Кроме того, используются микроканальные умножители, системы типа диодных матриц и коллекторы, собирающие все ионы, попавшие в данную точку пространства (коллекторы Фарадея).

Хромато-масс-спектрометрия

Масс-спектрометры используются для анализа органических и неорганических соединений.

Органические вещества в большинстве случаев представляют собой многокомпонентные смеси индивидуальных компонентов. Например, показано, что запах жареной курицы составляют 400 компонентов (то есть, 400 индивидуальных органических соединений). Задача аналитики состоит в том, чтобы определить сколько компонентов составляют органическое вещество, узнать какие это компоненты (идентифицировать их) и узнать сколько каждого соединения содержится в смеси. Для этого идеальным является сочетание хроматографии с масс-спектрометрией. Газовая хроматография как нельзя лучше подходит для сочетания с ионным источником масс-спектрометра с ионизацией электронным ударом или химической ионизацией, поскольку в колонке хроматографа соединения уже находятся в газовой фазе. Приборы, в которых масс-спектрометрический детектор скомбинирован с газовым хроматографом, называются хромато-масс-спектрометрами («Хромасс»).

Многие органические соединения невозможно разделить на компоненты с помощью газовой хроматографии, но можно с помощью жидкостной хроматографии. Для сочетания жидкостной хроматографии с масс-спектрометрией сегодня используют источники ионизации в электроспрее (ESI) и химической ионизации при атмосферном давлении (APCI), а комбинацию жидкостных хроматографов с масс-спектрометрами называют ЖХ/МС (англ. LC/MS). Самые мощные системы для органического анализа, востребованные современной протеомикой, строятся на основе сверхпроводящего магнита и работают по принципу ионно-циклотронного резонанса. Они также носят название FT/MS, поскольку в них используется Фурье преобразование сигнала.

Характеристики масс-спектрометров и масс-спектрометрических детекторов

Важнейшими техническими характеристиками масс-спектрометров являются чувствительность, динамический диапазон, разрешение, скорость сканирования.

Важнейшая характеристика при анализе органических соединений - это чувствительность. Для того, чтобы достигнуть как можно большей чувствительности при улучшении отношения сигнала к шуму прибегают к детектированию по отдельным выбранным ионам. Выигрыш в чувствительности и селективности при этом колоссальный, но при использовании приборов низкого разрешения приходится приносить в жертву другой важный параметр - достоверность. Ведь если Вы записывали только один пик из всего характеристического масс-спектра, Вам понадобится ещё много поработать, чтобы доказать, что этот пик соответствует именно тому компоненту, который Вас интересует. Как же разрешить эту проблему? Использовать высокое разрешение на приборах с двойной фокусировкой, где можно добиться высокого уровня достоверности не жертвуя чувствительностью. Или использовать тандемную масс-спектрометрию, когда каждый пик, соответствующий материнскому иону можно подтвердить масс-спектром дочерних ионов. Итак, абсолютным рекордсменом по чувствительности является органический хромато-масс-спектрометр высокого разрешения с двойной фокусировкой.

По характеристике сочетания чувствительности с достоверностью определения компонентов следом за приборами высокого разрешения идут ионные ловушки. Классические квадрупольные приборы нового поколения имеют улучшенные характеристики благодаря ряду инноваций, применённых в них, например, использованию искривлённого квадрупольного префильтра, предотвращающего попадание нейтральных частиц на детектор и, следовательно, снижению шума.

Применения масс-спектрометрии

Разработка новых лекарственных средств для спасения человека от ранее неизлечимых болезней и контроль производства лекарств, генная инженерия и биохимия, протеомика. Без масс-спектрометрии немыслим контроль над незаконным распространением наркотических и психотропных средств, криминалистический и клинический анализ токсичных препаратов, анализ взрывчатых веществ.

Выяснение источника происхождения очень важно для решения целого ряда вопросов: например, определение происхождения взрывчатых веществ помогает найти террористов, наркотиков - бороться с их распространением и перекрывать пути их трафика. Экономическая безопасность страны более надёжна, если таможенные службы могут не только подтверждать анализами в сомнительных случаях страну происхождения товара, но и его соответствие заявленному виду и качеству. А анализ нефти и нефтепродуктов нужен не только для оптимизации процессов переработки нефти или геологам для поиска новых нефтяных полей, но и для того, чтобы определить виновных в разливах нефтяных пятен в океане или на земле.

В эпоху «химизации сельского хозяйства» весьма важным стал вопрос о присутствии следовых количеств применяемых химических средств (например, пестицидов) в пищевых продуктах. В мизерных количествах эти вещества могут нанести непоправимый вред здоровью человека.

Целый ряд техногенных (то есть не существующих в природе, а появившихся в результате индустриальной деятельности человека) веществ являются супертоксикантами (имеющими отравляющее, канцерогенное или вредное для здоровья человека действие в предельно низких концентрациях). Примером является хорошо известный диоксин.

Существование ядерной энергетики немыслимо без масс-спектрометрии. С её помощью определяется степень обогащения расщепляющихся материалов и их чистота.

Конечно и медицина не обходится без масс-спектрометрии. Изотопная масс-спектрометрия углеродных атомов применяется для прямой медицинской диагностики инфицированности человека Helicobacter pylori и является самым надёжным из всех методов диагностики. Также, масс-спектрометрия применяется для определения наличия допинга в крови спортсменов.

Трудно представить область человеческой деятельности, где не нашлось бы места масс-спектрометрии. Ограничимся просто перечислением: аналитическая химия, биохимия, клиническая химия, общая химия и органическая химия, фармацевтика, косметика, парфюмерия, пищевая промышленность, химический синтез, нефтехимия и нефтепераработка, контроль окружающей среды, производство полимеров и пластиков, медицина и токсикология, криминалистика, допинговый контроль, контроль наркотических средств, контроль алкогольных напитков, геохимия, геология, гидрология, петрография, минералогия, геохронология, археология, ядерная промышленность и энергетика, полупроводниковая промышленность, металлургия.

(масс-сиектроскопия, масс-спектрография, масс-спектральный анализ, масс-спектрометрический анализ) – метод исследования вещества путем определения отношения массы к заряду (качества) и количества заряженных частиц, образующихся при том или ином процессе воздействия на вещество. История масс-спектрометрии ведется с основополагающих опытов Джона Томсона в начале XX в. Окончание "-метрия" термин получил после повсеместного перехода от детектирования заряженных частиц при помощи фотопластинок к электрическим измерениям ионных токов.

Существенное отличие масс-спектрометрии от других аналитических физико-химических методов состоит в том, что оптические, рентгеновские и некоторые другие методы детектируют излучение или поглощение энергии молекулами или атомами, а масс-спектрометрия непосредственно детектирует сами частицы вещества (рис. 6.12).

Рис. 6.12.

Масс-спектрометрия в широком смысле – это наука получения и интерпретации масс-спектров, которые, в свою очередь, получаются при помощи масс-спектрометров.

Масс-спектрометр – это вакуумный прибор, использующий физические законы движения заряженных частиц в магнитных и электрических полях, необходимый для получения масс-спектра.

Масс-спектр, как и любой спектр, в узком смысле – это зависимость интенсивности ионного тока (количества) от отношения массы к заряду (качества). Ввиду квантования массы и заряда типичный масс-спектр является дискретным. Обычно (в рутинных анализах) так оно и есть, но не всегда. Природа анализируемого вещества, особенности метода ионизации, и вторичные процессы в масс-спектрометре могут оставлять свой след в масс-спектре. Так, ионы с одинаковыми отношениями массы к заряду могут оказаться в разных частях спектра и даже сделать часть его непрерывным. Поэтому масс-спектр в широком смысле – это нечто большее, несущее специфическую информацию и делающее процесс его интерпретации более сложным и увлекательным. Ионы бывают однозарядные и многозарядные, причем как органические, так и неорганические. Большинство небольших молекул при ионизации приобретает только один положительный или отрицательный заряд. Атомы способны приобретать более одного положительного заряда и только один отрицательный. Белки, нуклеиновые кислоты и другие полимеры способны приобретать множественные положительные и отрицательные заряды. Атомы химических элементов имеют специфическую массу. Таким образом, точное определение массы анализируемой молекулы позволяет установить ее элементный состав. Масс-спектрометрия также позволяет получить важную информацию об изотопном составе анализируемых молекул. В органических веществах молекулы представляют собой определенные структуры, образованные атомами. Природа и человек создали поистине неисчислимое многообразие органических соединений. Современные масс-спектрометры способны фрагментировать детектируемые ионы и определять массу полученных фрагментов. Таким образом можно получать данные о структуре вещества.

Принцип работы масс-спектрометра

Приборы, которые используются в масс-спектрометрии, называются масс-спектрометры или масс-спектрометрические детекторы. Эти приборы работают с материальным веществом, которое состоит из мельчайших частиц – молекул и атомов. Масс-спектрометры устанавливают, что это за молекулы (т.е. какие атомы их составляют, какова их молекулярная масса, какова структура их расположения) и что это за атомы (т.е. их изотопный состав). Существенное отличие масс-спектрометрии от других аналитических физико-химических методов состоит в том, что оптические, рентгеновские и некоторые другие методы детектируют излучение или поглощение энергии молекулами или атомами, а масс-спектрометрия имеет дело с самими частицами вещества. Масс-спектрометрия измеряет их массы, вернее, соотношение массы к заряду. Для этого используются законы движения заряженных частиц материи в магнитном или электрическом поле. Масс-спектр – это рассортировка заряженных частиц по их массам (отношениям массы к заряду).

Во-первых, для того чтобы получить масс-спектр, необходимо превратить нейтральные молекулы и атомы, составляющие любое органическое или неорганическое вещество, в заряженные частицы – ионы. Этот процесс называется ионизацией и по-разному осуществляется для органических и неорганических веществ. В органических веществах молекулы представляют собой определенные структуры, образованные атомами.

Во-вторых, необходимо перевести ионы в газовую фазу в вакуумной части масс-спектрометра. Глубокий вакуум обеспечивает беспрепятственное движение ионов внутри масс-спектрометра, а при его отсутствии ионы рассеются и рекомбинируют (превратятся обратно в незаряженные частицы).

Условно способы ионизации органических веществ можно классифицировать по фазам, в которых находятся вещества перед ионизацией.

Газовая фаза:

  • электронная ионизация (ЭИ, El – Electron ionization);
  • химическая ионизация (ХИ, Cl – Chemical Ionization);
  • электронный захват (ЭЗ, ЕС – Electron capture);
  • ионизация в электрическом поле (ПИ, FI – Field ionization).

Жидкая фаза:

  • термоспрей;
  • ионизация при атмосферном давлении (АДИ, АР – Atmospheric Pressure Ionization);
  • электроспрей (ЭС, ESI – Electrospray ionization);
  • химическая ионизация при атмосферном давлении (ХИАД, APCI – Atmospheric pressure chemical ionization);
  • – фотоионизация при атмосферном давлении (ФИАД, APPI – Atmospheric pressure fotoionization).

Твердая фаза:

  • прямая лазерная десорбция – масс-спектрометрия (ПЛДМС, LDMS – Direct Laser Desorption – Mass Spectrometry);
  • матрично-активированная лазерная десорбция (ионизация) (МАЛДИ, MALDI – Matrix Assisted Laser Desorbtion (Ionization));
  • масс-спектрометрия вторичных ионов (МСВИ, SIMS – Secondary-Ion Mass Spectrometry);
  • бомбардировка быстрыми атомами (ББА, FAB – Fast Atom Bombardment);
  • десорбция в электрическом поле (ПД, FD – Field Desorption);
  • плазменная десорбция (ПД, PD – Plasma desorption).

В неорганической химии для анализа элементного состава

применяются жесткие методы ионизации, так как энергии связи атомов в твердом теле гораздо больше, значит, и значительно более жесткие методы необходимо использовать для того, чтобы разорвать эти связи и получить ионы:

  • ионизация в индуктивно-связанной плазме (ИСП, IC – Pinductively coupled plasma);
  • термоионизация или поверхностная ионизация;
  • ионизация в тлеющем разряде и искровая ионизация;
  • ионизация в процессе лазерной абляции.

Исторически первые методы ионизации были разработаны для газовой фазы. К сожалению, очень многие органические вещества невозможно испарить, т.е. перевести в газовую фазу, без разложения. А это значит, что их нельзя ионизовать электронным ударом. Но среди таких веществ почти все, что составляет живую ткань (белки, ДНК и т.д.), физиологически активные вещества, полимеры, т.е. все то, что сегодня представляет особый интерес. Масс-спектрометрия не стояла на месте и в последние годы были разработаны специальные методы ионизации таких органических соединений. Сегодня используются в основном два из них – ионизация при атмосферном давлении и ее подвиды – электроспрей (ЭС), химическая ионизация при атмосферном давлении и фотоионизация при атмосферном давлении, а также ионизация лазерной десорбцией при содействии матрицы (МАЛДИ).

Полученные при ионизации ионы с помощью электрического поля переносятся в масс-анализатор. Там начинается второй этап масс-спсктромстричсского анализа – сортировка ионов по массам (точнее, по отношению массы к заряду).

Существуют следующие типы масс-анализаторов.

  • 1. Непрерывные масс-анализаторы:
    • магнитный и электростатический секторный масс-анализатор;
    • квадрупольный масс-анализатор.
  • 2. Импульсные масс-анализаторы:
    • времяпролегный масс-анализатор;
    • ионная ловушка;
    • квадрупольная линейная ловушка;
    • масс-анализатор ионно-циклотронного резонанса с Фурье-прсобразованием;
    • орбитрэп.

Разница между непрерывными и импульсными масс-анализаторами заключается в том, что в первые ионы поступают непрерывным потоком, а во вторые – порциями, через определенные интервалы времени.

Масс-спектрометр может иметь два масс-анализатора. Такой масс-спектрометр называют тандемным. Тандемные масс-спектрометры применяются, как правило, вместе с "мягкими" методами ионизации, при которых не происходит фрагментации ионов анализируемых молекул (молекулярных ионов). Таким образом первый масс-анализатор анализирует молекулярные ионы. Покидая первый масс-анализатор, молекулярные ионы фрагментируются под действием соударений с молекулами инертного газа или излучения лазера, после чего их фрагменты анализируются во втором масс-анализаторе. Наиболее распространенными конфигурациями тандемных масс-спектрометров являются квадруполь – квадрупольная и квадруполь-времяпролетная.

Последним элементом описываемого нами упрощенного масс-спектрометра является детектор заряженных частиц. Первые масс-спектрометры использовали в качестве детектора фотопластинку. Сейчас используются динодные вторично-электронные умножители, в которых ион, попадая на первый динод, выбивает из него пучок электронов, которые, в свою очередь, попадая на следующий динод, выбивают из него еще большее количество электронов и т.д. Другой вариант – фотоумножители, регистрирующие свечение, возникающее при бомбардировке ионами люминофора.

Кроме того, используются микроканальные умножители, системы типа диодных матриц и коллекторы, собирающие все ионы, попавшие в данную точку пространства (коллекторы Фарадея).

Масс-спектрометры используются для анализа органических и неорганических соединений. Органические вещества в большинстве случаев представляют собой многокомпонентные смеси индивидуальных компонентов. Например, показано, что запах жареной курицы составляют 400 компонентов (т.е. 400 индивидуальных органических соединений). Задача аналитики состоит в том, чтобы определить, сколько компонентов составляют органическое вещество, узнать, какие это компоненты (идентифицировать их) и сколько каждого соединения содержится в смеси. Для этого идеальным является сочетание хроматографии с масс-спектрометрией. Газовая хроматография как нельзя лучше подходит для сочетания с ионным источником масс-спектрометра с ионизацией электронным ударом или химической ионизацией, поскольку в колонке хроматографа соединения уже находятся в газовой фазе. Приборы, в которых масс-спектрометрический детектор скомбинирован с газовым хроматографом, называются хромато-масс-спектрометрами ("Хромасс").

Многие органические соединения невозможно разделить на компоненты с помощью газовой хроматографии, но можно разделить с помощью жидкостной хроматографии. Для сочетания жидкостной хроматографии с масс-спектрометрией сегодня используют источники ионизации в электроспрес и химической ионизации при атмосферном давлении, а комбинацию жидкостных хроматографов с масс-спектрометрами называют ЖХ/МС. Самые мощные системы для органического анализа, востребованные современной протеомикой, строятся на основе сверхпроводящего магнита и работают по принципу ионно-циклотронного резонанса.

Наиболее широкое распространение получил в последнее время масс-анализатор, позволяющий наиболее точно померить массу иона, и обладающий очень высоким разрешением. Высокое разрешение позволяет работать с полипротонированными ионами, образующимися при ионизации белков и пептидов в электроспрее, а высокая точность определения массы позволяет получать брутто-формулу ионов, делая возможным определять структуру последовательностей аминокислотных остатков в пептидах и белках, а также детектировать послетрансляционные модификации белков. Это сделало возможным секвенировать белки без их предварительного гидролиза на пептиды. Такой способ получил название "Top-down" протеомики. Получение уникальной информации стало возможно благодаря применению масс-анализатора ионно-циклотронного резонанса с Фурье-преобразованием. В этом анализаторе ионы влетают в сильное магнитное поле и вращаются там по циклическим орбитам (как в циклотроне, ускорителе элементарных частиц). Такой масс-анализатор обладает определенными преимуществами: имеет очень высокое разрешение, диапазон измеряемых масс весьма широк, может анализировать ионы, получаемые всеми способами. Однако для своей работы он требует сильного магнитного ноля, а значит, использования сильного магнита со сверхпроводящим соленоидом, поддерживаемым при очень низкой температуре (жидкого гелия, приблизительно -270°С).

Важнейшими техническими характеристиками масс-спектрометров являются чувствительность, динамический диапазон, разрешение, скорость сканирования.

Важнейшая характеристика при анализе органических соединений – это чувствительность. Для того чтобы достигнуть как можно большей чувствительности при улучшении отношения сигнала к шуму, прибегают к детектированию по отдельным выбранным ионам. Выигрыш в чувствительности и селективности при этом колоссальный, но при использовании приборов низкого разрешения приходится приносить в жертву другой важный параметр – достоверность. Использование высокого разрешения на приборах с двойной фокусировкой позволяет добиваться высокого уровня достоверности, не жертвуя при этом чувствительностью.

Для достижения высокой чувствительности можно еще использовать тандемную масс-спектрометрию, когда каждый пик, соответствующий одиночному иону, можно подтвердить масс-спектром дочерних ионов. Абсолютным рекордсменом по чувствительности является органический хромато-масс-спектрометр высокого разрешения с двойной фокусировкой.

По характеристике сочетания чувствительности с достоверностью определения компонентов следом за приборами высокого разрешения идут ионные ловушки. Классические квадрупольные приборы нового поколения имеют улучшенные характеристики благодаря ряду инноваций, примененных в них, например использованию с целью снижения шума искривленного квадрупольного префильтра, предотвращающего попадание нейтральных частиц на детектор.

Хромато-масс-спектрометрия — аналитический метод, основанный на сочетании возможностей хроматографа и масс-спектрометра, использующийся для количественного и качественного определения отдельных компонентов в сложных смесях. В этой статье будут рассмотрены основные вопросы, касающиеся сути хромато-масс-спектрометрии и ее особенностей:

Прибор, с помощью которого проводится исследование, получил название хромато-масс-спектрометра или ХМС. Проходя через хроматограф, проба разделяется на компоненты, а масс-спектрометр отвечает за их идентификацию и анализ. В зависимости от особенностей исследуемого состава и требований к точности результата, используется одна из двух методик: или высокоточная жидкостная хроматография, или газовая хроматография с масс-спектрометрическим детектированием ГХ-МС.

Исследуемый состав вводится в испаритель хроматографа и моментально переводится в газообразную форму, смешивается с инертным газом-носителем и под давлением подается в колонку. Проходя через хроматографическую колонку, проба разделяется на компоненты, которые подаются в МС и пропускаются через спектрометрическую составляющую устройства.

Для получения спектра, молекулы компонентов пробы ионизируются, специальный датчик считывает изменение ионного тока, на основании чего записывается хроматограмма. Программное обеспечение для обработки хроматограмм позволяет сверить полученные пики с зарегистрированными ранее, и тем самым, проводя их точное качественное и количественное определение. Одновременно с этим делается снимок масс-спектра, дающий представление о строении компонентов, в том числе и не идентифицированных ранее.

Хромато-масс-спектрометрия была разработана в 50-х годах прошлого века, а первый прибор собран и протестирован в 60-х годах.

Эффективность и результативность хромато-масс-спектрометрии задается чувствительностью ХМС, которые постоянно совершенствуются, что позволяет расширять применение системы ГХ-МС.

Высокую точность показывает селективное детектирование. Его суть сводится к записи показаний не по всему объему поступающего ионного тока, а по максимальным для предполагаемых молекул ионам. Это удешевляет метод и позволяет обнаруживать минимальное содержание заданного вещества в любых составах. Поэтому хромато-масс-спектрометрия активно применяется в медицине и фармакологии для поиска конкретных маркеров: например, гормонов или наркотиков в биологических жидкостях.

Высокой чувствительностью обладает хромато-масс-спектрометр с МСД ISQ. Особенности применяемого в нем детектора заключаются в:

  • использовании специальных материалов, обеспечивающих высокий ионный выход в любых рабочих режимах;
  • системе автоматической обработки сигнала посредством возможностей ПО;
  • системе автоматической настройки МС;
  • системе автоматической диагностики МС;
  • сочетании высококачественных электродов с цифровой системой детектирования, позволяющим повысить скорость сканирования;
  • специальной системе подавления шумов от остаточного гелия.

Высокая чувствительность и широкая сфера применения хроматомасс-спектрометра, вполне оправдывает его цену.

На качество результата влияет еще и скорость записи масс-спектра, которая должна быть значительно выше, чем построение хроматографического пика. Если скорость снижается, появляются пиковые наложения и искажения результата анализа.

Этот параметр зависит от установленного масс-анализатора. Оптимальной в настоящее время является квадрупольная система, функционирующая по следующему принципу. Поток проходит через четыре магнита, создающих высокочастотное поле. Попадая в него, частицы с определенным отношением массы и заряда попадают в уловитель, все остальные «отсеиваются».

МС через равные промежутки времени сканирует спектры анализируемых веществ. Затем каждый статистический снимок обрабатывается, и суммарная величина дает представление о совокупности спектров в каждый момент времени. На большинстве современных МС (например, на агрегатах с МСД ISQ, о которых рассказывалось выше), установлен именно этот тип анализаторов.

Оборудование для масс-хроматографии отличается своими параметрами и возможностями. Чтобы подобрать технику, отвечающую потребностям современного пользователя, необходимо учитывать следующие параметры:

  • используемый источник ионизации (электронный удар, химическая ионизация);
  • чувствительность наиболее распространенных МС позволяют достичь 10-9…10-12 г на разных режимах сканирования;
  • возможность сканирования: желательно, чтобы хромато-масс-спектрометр поддерживал селективный поиск по указанным группам частиц (режим SIM) , а также выполнял полное сканирование в заданном диапазоне (режим Full scan).

Большое значение для хромато-масс-спектрометрии приобретает программное обеспечение, поставляющееся в комплекте. Оно определяет возможность построения хроматограммы в режиме реального времени, контроль над стабильностью заданных параметров, автоматическое получение отчетности в удобной для специалиста форме. От ПО зависит, насколько удобен в работе хромато-масс-спектрометр. Дополнительно разработчики предлагают набор библиотек, в которых содержатся спектры для различных промышленных и научных сфер: медицины и фармакологии (гормоны, наркотики, лекарственные препараты), нефтедобывающей отрасли (углеводороды), экологии (пестициды и другие органические загрязнители) и др.

Подбирая хромато-масс-спектрометр, необходимо учитывать все спецификации. Тогда приобретенное устройство будет полностью отвечать потребностям пользователя.

МАСС-СПЕКТРОМЕТРИЯ ( , масс-спектральный анализ), метод анализа в-ва путем определения массы (чаще, отношения массы к заряду m/z) и относит. кол-ва , получаемых при ионизации исследуемого в-ва или уже присутствующих в изучаемой смеси. Совокупность значений m/z и относит. величин токов этих , представленная в виде графика или таблицы, наз. масс-спектром в-ва (рис. 1).

Начало развитию масс-спектрометрии положено опытами Дж. Томсона (1910), исследовавшего пучки заряженных частиц, разделение к-рых по массам производилось с помощью электрич. и магн. полей, а спектр регистрировался на . Первый построен А. Демпстером в 1918, а первый масс-спектрограф создал Ф. Астон в 1919; он же исследовал изотопич. состав большого числа элементов. Первый серийный создан А. Ниром в 1940; его работы положили начало изотопной масс-спектрометрии. Прямое соединение с газо-жидкостным (1959) дало возможность анализировать сложные смеси летучих соед., а соединение с жидкостным с помощью термораспылит. устройства (1983) -смеси труднолетучих соединений.
Macс-спектральные приборы. Для разделения исследуемого в-ва по величинам m/z, измерения этих величин и токов разделенных используют масс-спектральные приборы. Приборы, в к-рых регистрация осуществляется электрич. методами, наз. , а приборы с регистрацией на - масс-спектрографами. Масс-спектральные приборы состоят из системы ввода (система напуска), ионного источника, разделительного устройства (масс-анализатора), детектора (приемника ), обеспечивающих достаточно глубокий во всей вакуумной системе прибора, и системы управления и обработки данных (рис. 2). Иногда приборы соединяют с ЭВМ.


Масс-спектральные приборы характеризуются чувствительностью, к-рая определяется как отношение числа зарегистрированных к числу введенной . За абс. порог чувствительности принимают миним. кол-во исследуемого в-ва (выраженное в г, ), за относительный - миним. массовую или объемную долю в-ва (выраженную в %), к-рые обеспечивают регистрацию выходного сигнала при отношении сигнал-шум 1:1.
Ионный источник предназначен для образования газообразных исследуемого в-ва и формирования ионного пучка, к-рый направляется далее в масс-анализатор. наиб. универсальный метод ионизации в-ва - электронный удар. Впервые осуществлен П. Ленардом (1902). Совр. источники такого типа построены по принципу источника А. Нира (рис. 3).

Рис. 3. Схема ионного источника типа источника А. Нира: 1 - постоянный магнит; 2 - ; 3 - выталкивающий ; 4 - поток ; 5 - ловушка ; 6 - ионный луч; 7 - ввод в-ва.

Под действием поля, силовые линии к-рых направлены перпендикулярно направлению движения ионного пучка, двигаются по круговой траектории с радиусом r = (2Vm n /zH 2) 1/2 , где V - напряжение, ускоряющее , m n - масса , z - заряд , H - напряженность магн. поля. с одинаковой кинетич.
энергией, но с разными массами или зарядами проходят через анализатор по разл. траекториям. Обычно развертка масс-спектра (регистрация с определенными значениями m/z) осуществляется изменением Н при постоянном V. Разброс , вылетающих из ионного источника, по кинетич. энергиям, а также несовершенство фокусировки по направлениям приводят к уширению ионного пучка, что сказывается на разрешающей способности. Для статич. масс-анализатора R = r/(S 1 + S 2 + d ), где S 1 и S 2 - соотв. ширина входной и выходной щелей, d - уширение пучка в плоскости выходной щели. Уменьшение размера щелей для увеличения разрешающей способности прибора трудно осуществимо технически и, кроме того, приводит к очень малым ионным токам, поэтому обычно конструируют приборы с большим радиусом траектории (r = 200 - 300 мм). Разрешающая способность м. б. повышена также при использовании масс-анализаторов с двойной фокусировкой. В таких приборах ионный пучок пропускают сначала через отклоняющее электрич. поле спец. формы, в к-ром осуществляется фокусирование пучка по энергиям, а затем через магн. поле, в к-ром фокусируются по направлениям (рис. 5).

Рис. 5. Схема масс-анализатора с двойной фокусировкой: S 1 и S 2 - щели источника и детектора ; 1 - конденсатор; 2 - магнит.

Существует более 10 типов динамич. масс-анализаторов: квадруполъный, время-пролетный, циклотронно-резонансный, магнитно-резонансный, радиочастотный, фарвитрон, омегатрон и др. Ниже рассмотрены наиб. широко применяемые масс-анализаторы. Квадрупольный масс-анализатор представляет собой квадруполъный конденсатор (рис. 6), к параллельных стержней к-рого приложены постоянное напряжение V и переменное высокочастотное V 0 cos w t (w - частота, t - время); их суммы для каждой равны по величине и противоположны по знаку.


Рис. 6. Схема квадрупольного масс-анализатора: 1 - высокочастотный генератор; 2 - генератор постоянного напряжения; 3 - генератор развертки; 4 и 5 -источник и детектор .

Вылетевшие из ионного источника, движутся в камере анализатора вдоль оси z, параллельной продольным осям стержней, по сложным объемным спиралевидным траекториям, совершая поперечные колебания вдоль осей x и у. При фиксированных значениях частоты и амплитуды переменного напряжения с определенными значениями m/z проходят через квадруполъный конденсатор, у с др. значениями m/z амплитуда поперечных колебаний достигает такой величины, что они ударяются о стержни и разряжаются на них. Развертка масс-спектра производится путем изменения постоянного и переменного напряжении или частоты. Для совр. квадрупольных R = 8000. Первый квадрупольный прибор построен В. Паули и X. Штайнведелем (ФРГ, 1953). Время-пролетный масс-анализатор представляет собой эквипотенциальное пространство, в котором дрейфуют , разделяясь по скоростям движения (рис. 7). , образующиеся в ионном источнике, очень коротким электрич. импульсом "впрыскиваются" в виде "ионного пакета" через сетку в анализатор. В процессе движения исходный ионный пакет расслаивается на пакеты, состоящие из с одинаковыми значениями m/z. Скорость дрейфа отслоившихся ионных пакетов и, следовательно, время их пролета через анализатор длиной L вычисляется по ф-ле: (V - напряжение). Совокупность таких пакетов, поступающих в детектор, образует масс-спектр. Для совр. приборов R = 5000 - 10000. Первый прибор создан А. Камероном и Д. Эгтерсом (США, 1948), а в СССР - Н. И. Ионовым (1956).

Рис. 7. Схемавремя-пролетного масс-анализатора: 1 - сетка; 2 - детектор.

В 1973 Б. А. Мамыриным сконструирован прибор с электростатич. отражающим зеркалом, наз. масс-рефлектроном. Циклотронно-резонансный масс-анализатор -ячейка в виде прямоугольного параллелепипеда или куба, помещенная в однородное магн. поле. , попадая в ячейку, движутся в ней по спиральной траектории (циклотронное движение) с частотой w ц = 1 / 2 p z . H/m, где H - напряженность магн. поля, т. е. с одинаковыми значениями m/z имеют определенную циклотронную частоту. Действие прибора основано на резонансном поглощении энергии при совпадении частоты поля и циклотронной частоты . На применении циклотронно-резонансного масс-анализатора основан метод , к-рый используют для определения массы , в частности мол. , образующихся при ионно-молекулярных р-циях в газовой фазе; анализа структуры высокомол. ; определения кислотно-основных св-в в-в. Для легких R = 10 8 . Первый ионциклотронного резонанса построен Г. Соммером, Г. Томасом и Дж. Хиплом (США, 1950).
Детекторы (приемники) помещают на выходе прибора. Для детектирования используют электрометрич. усилители, позволяющие измерять ионные токи до 10 - 14 А, электронные умножители и сцинтилляц. детекторы с фотоумножителем, к-рые обеспечивают счет отдельных (ток 10 - 19 А) и имеют малую постоянную времени, а также , преимущество к-рых в возможности регистрации всех масс-спектра и накопление сигнала. Для введения в-ва в ионный источник существует спец. система, наз. системой напуска. Она обеспечивает ввод строго дозированных кол-в в-ва, его миним. термич. разложение, кратчайшую доставку к области ионизации и автоматич. смену образцов без нарушения . Система ввода и легколетучих в-в представляет собой холодные или обогреваемые стеклянные резервуары с вязкостными или мол. натекателями, через к-рое газообразное в-во поступает в область ионизации. При соединении с между ионным источником и помещается мол. сепаратор (струйный, пористый или мембранный), в к-ром удаляется газ-носитель и обогащается анализируемым в-вом. Система ввода труднолетучих в-в представляет собой чаще всего вакуумный шлюз, из к-рого ампула с в-вом вводится непосредственно в ионизац. камеру. Ампула укреплена на штоке, снабженном нагревателем, с помощью к-рого создается необходимая т-ра для в-ва. В нек-рых случаях ампула нагревается за счет тепла ионизац. камеры. Для уменьшения разложения в-ва повышают скорость нагревания , к-рая должна превышать скорость термич. разложения. Так действуют устройства, соединяющие жидкостной с ионным источником. Наиб. распространено устройство, основанное на термораспылении р-ра исследуемого в-ва, при к-ром происходит его ионизация. Др. тип - ленточный транспортер, на ленте к-рого в-во доставляется в ионный источник через систему шлюзов. При движении ленты происходит удаление р-рителя, а в ионном источнике при быстром нагревании ленты в-во испаряется и ионизируется. В нек-рых случаях возможны и ионизация в-ва в результате его бомбардировки ускоренными частицами на пов-сти ленты. Для труднолетучих неорг. соед. применяют спец. , наз. ячейкой Кнудсена. Это - высокотемпературная с тиглем, имеющим отверстие малого диаметра 0,1-0,3 мм, через к-рое протекает в условиях близких к равновесным. работает в условиях глубокого (10 - 5 - 10 - 6 Па и выше), к-рый позволяет свести к минимуму потерю разрешающей способности из-за столкновения ионного пучка с нейтральными . Ионный источник и масс-анализатор имеют разные системы откачки и соединяются между собой каналом такого размера, к-рый достаточен для прохождения ионного луча. Такая конструкция предохраняет падение в анализаторе при повышении в источнике . В источнике необходима также высокая скорость откачки для уменьшения эффекта памяти (удаление в-в, адсорбированных на внутр. пов-сти прибора). Обычно в приборах создают диффузионные . Применяют также турбомолекулярные , обеспечивающие получение сверхвысокого (10 - 7 - 10 - 8 Па) и откачку со скоростью неск. литров в секунду; эти не требуют применения охлаждаемых ловушек. Сбор данных и управление требует автоматизации всех процессов с помощью ЭВМ, к-рая позволяет проводить разл. типы исследований по заранее заданной программе с условий анализа в процессе работы прибора.
Применение масс-спектрометрии. Масс-спектрометрию широко применяют в разл. областях науки и техники: в и , физике, геологии, биологии, медицине, в пром-сти , в лакокрасочной и хим. пром-сти, в произ-ве и сверхчистых материалов, в ядерной технике, в с. х-ве и ветеринарии, в пищ. пром-сти, при анализе продуктов загрязнения и мн. др. Большие успехи достигнуты при анализе биологически важных в-в; показана возможность с мол. м. до 15000, с мол. м. до 45000 и т.д. Масс-спектрометрия нашла применение как экспрессный метод в медицине; принципы масс-спектрометрии лежат в основе устройства наиб. чувствит. течеискателей. Отечеств. , выпускаемые для разл. целей, имеют индексы: для исследования изотопного состава - МИ, для исследования хим. состава - MX, для - МС. Macс-спектрометрия в позволяет измерить точную мол. массу и рассчитать элементный состав исследуемого в-ва, установить хим. и пространств. строение, определить изотопный состав, провести качеств. и количеств. анализ сложных смесей орг. соединений. Одна из важнейших задач - нахождение зависимости между характером масс-спектра и строением исследуемой орг. . При ионизации орг. образуется мол. , в к-ром далее происходят процессы гетеро- и гомолитич. разрыва связей или разрыва связей с перегруппировкой и образование осколочных , к-рые в свою очередь могут подвергаться дальнейшему распаду. Последоват. распады , устанавливаемые из масс-спектра, наз. направлениями или путями распада. Направления распада - важная характеристика каждого класса соединений. Совокупность всех направлений распада составляет характерную для каждого орг. соед. схему фрагментации. Если масс-спектр прост, схема фрагментации сводится к одному пути распада, напр. при распаде мол. СН 3 ОН + последовательно образуются СН 2 =ОН + и Н-С=О + . В случае сложных масс-спектров схема фрагментации отвечает многим, часто перекрывающимся направлениям распада, напр. схема фрагментации :


Мол. распадается в результате разрыва связей СН-СО, СО-NH, NH-СН и СН-R с образованием осколочных соотв. А n и Х n , В n и Y n , С n и Z n , S n и R n (n - номер аминокислотного остатка в пептидной цепи), к-рые далее распадаются таким же образом. Общее кол-во пиков в таком спектре может достигать неск. сотен. Кол-во фрагментов определяется строением исследуемой , запасом внутр. энергии мол. и осколочных и промежутком времени между образованием и его детектированием. Поэтому при интерпретации масс-спектров необходимо учитывать как условия измерений (энергию ионизирующих , ускоряющее напряжение, в ионном источнике, т-ру ионизац. камеры), так и конструктивные особенности прибора. При макс. стандартизации условий измерений удается получать достаточно воспроизводимые масс-спектры. Сравнение масс-спектра исследуемой системы со спектром, имеющимся в каталоге, -наиб. быстрый и простой способ , в-в при определении загрязнения , контроле продуктов питания человека и животных, изучении процессов лек. препаратов, в криминалистике и т.д. Однако лишь на масс-спектра не может быть однозначной, напр. не все изомерные в-ва образуют различающиеся масс-спектры. В условиях масс-спектрометрии часть возбужденных распадается после выхода из ионного источника. Такие наз. метастабильными. В масс-спектрах они характеризуются уширенными пиками при нецелочисленных значениях т/z. Один из методов изучения таких - масс и кинетич. энергий . Изучение распада метастабильных проводят на приборах, у к-рых магн. анализатор предшествует электрическому. Магн. анализатор настраивают таким образом, чтобы он пропустил метастабильный

Масс-спектрометры

приборы для разделения ионизированных частиц вещества (молекул, атомов) по их массам, основанные на воздействии магнитных и электрических полей на пучки ионов, летящих в вакууме. В М.-с. регистрация ионов осуществляется электрическими методами, в масс-спектрографах - по потемнению чувствительного слоя фотопластинки, помещаемой в прибор.

М.-с. (рис. 1 ) обычно содержит устройство для подготовки исследуемого вещества 1; ионный источник 2, где это вещество частично ионизуется и происходит формирование ионного пучка; масс-анализатор 3, в котором происходит разделение ионов по массам, точнее, обычно по величине отношения массы m иона к его заряду e ; приёмник ионов 4, где ионный ток преобразуется в электрический сигнал, который затем усиливается и регистрируется. В регистрирующее устройство 6, помимо информации о количестве ионов (ионный ток), из анализатора поступает также информация о массе ионов. М.-с. содержит также системы электрического питания и устройства, создающие и поддерживающие высокий Вакуум в ионном источнике и анализаторе. Иногда М.-с. соединяют с ЭВМ.

При любом способе регистрации ионов масс-спектр в конечном счёте представляет собой зависимость величины ионного тока I от m . Например, в масс-спектре свинца (рис. 2 ) каждый из пиков ионного тока соответствует однозарядным ионам изотопов свинца. Высота каждого пика пропорциональна содержанию данного изотопа в свинце. Отношение массы иона к ширине δ m пика (в единицах массы) R на разных уровнях также различна. Так, например, в спектре рис. 2 в области пика изотопа 208 Pb на уровне 10 % относительно вершины пика R = 250, а на уровне 50 % (полувысота) R = 380. Для полной характеристики разрешающей способности прибора необходимо знать форму ионного пика, которая зависит от мн. факторов. Иногда разрешающей способностью наз. значение той наибольшей массы, при которой два пика, отличающиеся по массе на 1, разрешаются до заданного уровня. Т. к. для мн. типов М.-с. R не зависит от отношения м/е, то оба приведённых определения R совпадают. Принято говорить, что М.-с. с R до 10 2 имеет низкую разрешающую силу, с R Масс-спектрометры 10 2 - 10 3 - среднюю, с R Масс-спектрометры 10 3 - 10 4 - высокую, с R > 10 4 - 10 5 - очень высокую.

Общепринятого определения чувствительности М.-с. не существует. Если исследуемое вещество вводится в ионный источник в виде газа, то чувствительностью М.-с. часто называют отношение тока, создаваемого ионами данной массы заданного вещества, к парциальному давлению этого вещества в ионном источнике. Эта величина в приборах разных типов и с разными разрешающими способностями лежит в диапазоне от 10 -6 до 10 -3 а/мм рт. ст. Относительной чувствительностью называется минимальное содержание вещества, которое ещё может быть обнаружено с помощью М.-с. в смеси веществ. Для разных приборов, смесей и веществ она лежит в диапазоне от 10 -3 до 10 -7 %. За абсолютную чувствительность иногда принимают минимальное количество вещества в r, которое необходимо ввести в М.-с. для обнаружения этого вещества.

Масс-анализаторы. В основе классификации М.-с. лежит принцип устройства масс-анализатора. Различают статические и динамические М.-с. В статических масс-анализаторах для разделения ионов используются электрические и магнитные поля, постоянные или практически не изменяющиеся за время пролёта иона через прибор. Разделение ионов является в этом случае пространственным: ионы с разными значениями m/е движутся в анализаторе по разным траекториям. В масс-спектрографах пучки ионов с разными величинами m/е фокусируются в разных местах фотопластинки, образуя после проявления следы в виде полосок (выходное отверстие ионного источника обычно делается в форме прямоугольной щели). В статических М.-с. пучок ионов с заданным m/е фокусируется на щель приёмника ионов. Масс-спектр образуется (развёртывается) при изменении магнитного или электрического поля, в результате чего в приёмную щель последовательно попадают пучки ионов с разными величинами m/е . При непрерывной записи ионного тока получается график с ионными пиками (рис. 2 ). Для получения в такой форме масс-спектра, зарегистрированного масс-спектрографом на фотопластинке, используются Микрофотометр ы.

На рис. 3 приведена схема распространённого статического масс-анализатора с однородным магнитным полем. Ионы, образованные в ионном источнике, выходят из щели шириной S 1 в виде расходящегося пучка, который в магнитном поле разделяется на пучки ионов с разными

причём пучок ионов с массой m b фокусируется на щель S 1 приёмника ионов. Величина m b /e определяется выражением:

где m b - масса иона (в атомных единицах массы (См. Атомные единицы массы)), е - заряд иона (в ед. элементарного электрического заряда (См. Элементарный электрический заряд)), r - радиус центральной траектории ионов (в см ), Н - напряжённость магнитного поля (в э), V - приложенная разность потенциалов (в в ), с помощью которой ускорены ионы в ионном источнике (ускоряющий потенциал).

Развёртка масс-спектра производится изменением Н или V . Первое предпочтительнее, т. к. в этом случае по ходу развёртки не изменяются условия «вытягивания» ионов из ионного источника. Разрешающая способность такого М.-с.:

где σ 1 - ширина пучка в месте, где он попадает в щель приёмника S 2 .

Если бы фокусировка ионов была идеальной, то в случае масс-анализатора, у которого X 1 = X 2 (рис. 3 ), σ 1 было бы в точности равно ширине щели источника S 1 . В действительности σ 1 >S 1 , что уменьшает разрешающую способность М.-с. Одной из причин уширения пучка является разброс в кинетической энергии у ионов, вылетающих из ионного источника. Это в большей или меньшей степени неизбежно для любого ионного источника (см. ниже). Другими причинами являются: наличие у данного пучка значительной расходимости, рассеяние ионов в анализаторе из-за столкновения с молекулами остаточного газа, «расталкивание» ионов в пучке из-за одноимённости их зарядов. Для ослабления влияния этих факторов применяют «наклонное вхождение» пучка в анализатор и криволинейные границы магнитного поля. В некоторых М.-с. применяют неоднородные магнитные поля, а также т. н. призменную оптику (см. Электронная и ионная оптика). Для уменьшения рассеяния ионов стремятся к созданию в анализаторе высокого вакуума (≤10 -8 мм рт. cm. в приборах со средней и высокой величиной R). Для ослабления влияния разброса по энергиям применяют М.-с. с двойной фокусировкой, которые фокусируют на щель S 2 ионы с одинаковыми m/е , вылетающие не только по разным направлениям, но и с разными энергиями. Для этого ионный пучок пропускают не только через магнитное, но и через отклоняющее электрическое поле специальные формы (рис. 4 ).

Сделать S 1 и S 2 меньше на несколько мкм технически трудно. Кроме того, это привело бы к очень малым ионным токам. Поэтому в приборах для получения высокой и очень высокой разрешающей способности приходится использовать большие величины r и соответственно длинные ионные траектории (до нескольких м ).

В динамических масс-анализаторах для разделения ионов с разными m/е используют, как правило, разные времена пролёта ионами определённого расстояния. Существуют динамические анализаторы, в которых используется сочетание электрического и магнитного полей, и чисто электрические анализаторы. Для динамических масс-анализаторов общим является воздействие на ионные пучки импульсных или радиочастотных электрических полей с периодом, меньшим или равным времени пролёта ионов через анализатор. Предложено более 10 типов динамических масс-анализаторов, в том числе время-пролётный (1), радиочастотный (2), квадрупольный (3), фарвитрон (4), омегатрон (5), магнито-резонансный (6), циклотронно-резонансный (7). Первые четыре анализатора являются чисто электрическими, в последних трёх используется сочетание постоянного магнитного и радиочастотного электрических полей.

Во время-пролётном М.-с. (рис. 5 ) ионы образуются в ионном источнике очень коротким электрическим импульсом и «впрыскиваются» в виде «ионного пакета» через сетку 1 в анализатор 2, представляющий собой эквипотенциальное пространство. «Дрейфуя» вдоль анализатора по направлению к коллектору ионов 3, исходный пакет «расслаивается» на ряд пакетов, каждый из которых состоит из ионов с одинаковыми m/е . Расслоение обусловлено тем, что в исходном пакете энергия всех ионов одинакова, а их скорости и, следовательно, времена пролёта t анализатора обратно пропорциональны

В радиочастотном М.-с. (рис. 6 ) ионы приобретают в ионном источнике одинаковую энергию eV и проходят через систему последовательно расположенных сеточных каскадов. Каждый каскад представляет собой три плоскопараллельные сетки 1, 2, 3, расположенные на равном расстоянии друг от друга. К средней сетке относительно двух крайних приложено высокочастотное электрическое ω поле U вч. При фиксированных частоте этого поля и энергии ионов eV только ионы с определённым m/е имеют такую скорость υ, что, двигаясь между сетками 1 и 2 в полупериоде, когда поле между ними является ускоряющим для ионов, они пересекают сетку 2 в момент смены знака поля и проходят между сетками 2 и 3 также в ускоряющем поле. Т. о., они получают макс. прирост энергии и попадают на коллектор. Ионы других масс, проходя эти каскады, либо тормозятся полем, т. е. теряют энергию, либо получают недостаточный прирост энергии и отбрасываются в конце пути от коллектора высоким тормозящим потенциалом U 3 . В результате на коллектор попадают только ионы с определённым m/е . Масса таких ионов определяется соотношением:

где а - численный коэффициент, S - расстояние между сетками. Перестройка анализатора на регистрацию ионов других масс осуществляется изменением либо начальной энергии ионов, либо частоты высокочастотного поля.

В квадрупольном М.-с. (рис. 7 ) разделение ионов осуществляется в поперечном электрическом поле с гиперболическим распределением потенциала. Поле создаётся квадрупольным конденсатором (квадруполем), состоящим из четырёх стержней круглого или квадратного поперечного сечения, расположенных симметрично относительно центр, оси и параллельно ей. Противолежащие стержни соединены попарно, и между парами приложены постоянная и переменная высокочастотные разности потенциалов. Пучок ионов вводится в анализатор вдоль оси квадруполя через отверстие 1. При фиксированных значениях частоты ω и амплитуды переменного напряжения U 0 только у ионов с определённым значением m/е амплитуда колебаний в направлении, поперечном оси анализатора, не превышает расстояния между стержнями. Такие ионы за счёт начальной скорости проходят через анализатор и, выходя из него через выходное отверстие 2, регистрируются, попадая на коллектор ионов. Сквозь квадруполь проходят ионы, масса которых удовлетворяет условию:

где а - постоянная прибора. Амплитуда колебаний ионов др. масс нарастает по мере их движения в анализаторе так, что эти ионы достигают стержней и нейтрализуются. Перестройка на регистрацию ионов других масс осуществляется изменением амплитуды U o или частоты ω переменной составляющей напряжения.

В фарвитроне (рис. 8 ) ионы образуются непосредственно в самом анализаторе при ионизации молекул электронами, летящими с катода, и совершают колебания вдоль оси прибора между электродами 1 и 2. При совпадении частоты этих колебаний ω с частотой переменного напряжения U вч, подаваемого на сетку, ионы приобретают дополнит. энергию, преодолевают потенциальный барьер и приходят на коллектор. Условие резонанса имеет вид:

где а - постоянная прибора.

В динамических М.-с. с поперечным магнитным полем разделение ионов по массам основано на совпадении циклотронной частоты (См. Циклотронная частота) вращения иона по круговым траекториям в поперечном магнитном поле с частотой переменного напряжения, приложенного к электродам анализатора. Так, в омегатроне (рис. 9 ) под действием приложенных высокочастотного электрического поля Е и постоянного магнитного поля Н ионы движутся по дугам окружности. Ионы, циклотронная частота которых совпадает с частотой ω поля Е , движутся по спирали и достигают коллектора. Масса этих ионов удовлетворяет соотношению:

где а - постоянная прибора.

В магнито-резонансном М.-с. (рис. 10 ) используется постоянство времени пролёта ионами данной массы круговой траектории. Из ионного источника 1 близкие по массе ионы (область траекторий которых I заштрихована), двигаясь в однородном магнитном поле Н , попадают в модулятор 3, где формируется тонкий пакет ионов, которые за счёт полученного в модуляторе ускорения начинают двигаться по орбите II . Дальнейшее разделение по массам осуществляется путём ускорения «резонансных» ионов, циклотронная частота которых кратна частоте поля модулятора. Такие ионы после нескольких оборотов вновь ускоряются модулятором и попадают на коллектор ионов 2.

В циклотронно-резонансном М.-с. (рис. 11 ) происходит резонансное поглощение ионами электромагнитной энергии при совпадении циклотронной частоты ионов с частотой переменного электрического поля в анализаторе; ионы движутся по циклоидам в однородном магнитном поле Н с циклотронной частотой орбитального движения:

(с - скорость света).

Разрешающая способность для каждого типа динамических масс-анализаторов определяется сложной совокупностью факторов, часть из которых, например влияние объёмного заряда и рассеяния ионов в анализаторе, являются общими для всех типов М.-с., как динамических, так и статических. Для приборов (1) важную роль играет отношение времени, за которое ионы пролетают расстояние, равное ширине ионного пакета к общему времени пролёта ионами пространства дрейфа; для приборов (3) - число колебаний ионов в анализаторе и соотношение постоянной и переменной составляющих электрических полей; для приборов (5) - число оборотов, которые совершает ион в анализаторе, прежде чем попадает на коллектор ионов и т. д. Для некоторых типов динамических М.-с. достигнута высокая разрешающая способность: для (1) и (3) R Масс-спектрометры 10 3 , для (6) R Масс-спектрометры 2,5․10 4 , для (7) R Масс-спектрометры 2․10 3 .

Для М.-с. с очень высокой разрешающей способностью, а также для лабораторных приборов широкого назначения, от которых требуются одновременно высокая разрешающая способность, высокая чувствительность, широкий диапазон измеряемых масс и воспроизводимость результатов измерений, наилучшие результаты достигаются с помощью статических М.-с. С другой стороны, в отдельных случаях наиболее удобны динамические М.-с. Например, время-пролётные М. удобны для регистрации процессов длительностью от 10 -2 до 10 -5 сек; радиочастотные М.-с. благодаря малым величинам веса, габаритов и потребляемой мощности перспективны в космических исследованиях; квадрупольные М.-с. благодаря малым размерам анализатора, большому диапазону измеряемых масс и высокой чувствительности применяются при работе с молекулярными пучками (см. Молекулярные и атомные пучки). Магнито-резонансные М.-с. вследствие высоких значений R на низких уровнях интенсивности используются в геохимии изотопов гелия для измерения очень больших изотопных отношений.

Ионные источники. М.-с. классифицируются также по способам ионизации, в качестве которых используются: 1) ионизация электронным ударом; 2) фотоионизация; 3) ионизация в сильном электрическом поле (полевая Ионная эмиссия); 4) ионизация ионным ударом (ионно-ионная эмиссия); 5) Поверхностная ионизация ; электрическая искра в вакууме (вакуумная искра); 6) ионизация под действием лазерного луча (см. Лазерное излучение).

В аналитической масс-спектроскопии (См. Масс-спектроскопия) наиболее часто применяются благодаря относительной технической простоте и достаточно большим создаваемым ионным токам способы: 1 - при анализе испаряемых веществ; 6 - при работе с трудноиспаряемыми веществами и 5 - при изотопном анализе веществ с низкими потенциалами ионизации. Способ 6 благодаря большому энергетическому разбросу ионов обычно требует анализаторов с двойной фокусировкой даже для достижения разрешающей силы в несколько сотен единиц. Значения средних ионных токов, создаваемых ионным источником с ионизацией электронным ударом при энергии ионов в 40 - 100 эв и ширине щели источника Масс-спектрометры несколько десятков мкм (типичной для лабораторных М.-с.), составляют 10 -10 - 10 -9 а. Для других способов ионизации эти токи обычно меньше. «Мягкая» ионизация, т. е. ионизация молекул, сопровождаемая незначительной диссоциацией ионов, осуществляется с помощью электронов, энергия которых лишь на 1 - 3 эв превосходит энергию ионизации молекулы, а также с использованием способов 2, 3, 4. Получаемые при «мягкой» ионизации токи обычно Масс-спектрометры 10 -12 - 10 -14 а.

Регистрация ионных токов. Величины ионных токов, создаваемых в М.-с., определяют требования к их усилению и регистрации. Чувствительность применяемых в М.-с. усилителей Масс-спектрометры10 -15 - 10 -16 а при постоянной времени от 0,1 до 10 сек. Дальнейшее повышение чувствительности или быстродействия М.-с. достигается применением электронных умножителей, которые повышают чувствительность измерения токов в М.-с. до 10 -18 - 10 -19 а.

Примерно те же значения чувствительности достигаются при использовании фотографической регистрации ионов за счёт длительной экспозиции. Однако из-за малой точности измерения ионных токов и громоздкости устройств введения фотопластинок в вакуумную камеру анализатора фоторегистрация масс-спектров сохранила определенной значение лишь при очень точных измерениях масс, а также в тех случаях, когда необходимо одновременно регистрировать все линии масс-спектра из-за нестабильности источника ионов, например при элементном анализе в случае ионизации вакуумной искрой.

В СССР разрабатывается и выпускается много различной масс-спектральной аппаратуры. Принятая система индексов для М.-с. классифицирует приборы в основном не по типу устройства, а по назначению. Индекс состоит из двух букв (МИ - М.-с. изотопный, МХ - для химического анализа, МС - для физико-химических, в том числе структурных, исследований, МВ - прибор с высокой разрешающей способностью) и четырёх цифр, из которых первая указывает на используемый метод разделения ионов по массам (1 - в магнитном однородном поле, 2 - в магнитном неоднородном, 4 - магнито-динамический, 5 - время-пролётный, 6 - радиочастотный), вторая - на условия применения (1 - индикаторы, 2 - для производств, контроля, 3 - для лабораторных исследований, 4 - для спец. условий), а последние две являются номером модели. На рис. 12 показаны два М.-с., изготовленные в СССР. За рубежом М.-с. выпускаются несколько десятками фирм (США, Японии, ФРГ, Великобритании, Франции и Швеции).

Лит.: Астон Ф., Масс-спектры и изотопы, пер. с англ., М., 1948; Рафальсон А. Э., ШерешевскийА. М., Масс-спектрометрические приборы, М. - Л., 1968; Бейнон Дж., Масс-спектрометрия и её применение в органической химии, пер. с англ., М., 1964; Материалы 1 Всесоюзной конференции по масс-спектрометрии, Л., 1972; Джейрам Р., Масс-спектрометрия. Теория и приложения, пер. с англ., М., 1969; Полякова А. А., Хмельницкий Р. А., Масс-спектрометрия в органической химии, Л., 1972.

В. Л. Тальрозе.

Рис. 12. На столе большого масс-спектрометра с двойной фокусировкой для структурно-химического анализа МС-3301 с разрешающей силой RМасс-спектрометры5 ·10 4 лежит миниатюрный масс-спектрометр МХ-6407М (обведён квадратом), применявшийся для исследований ионосферы на искусственных спутниках Земли.

Рис. 10. Схема магнито-резонансного масс-анализатора; магнитное поле Н перпендикулярно плоскости рисунка.

Рис. 6. Схема радиочастотного масс-анализатора: 1, 2, 3 - сетки, образующие трёхсеточный каскад, на среднюю сетку 2 подано высокочастотное напряжение U вч. Ионы с определённой скоростью и, следовательно, определённой массой, внутри каскада ускоряясь высокочастотным полем, получают больший прирост кинетической энергии, достаточный для преодоления тормозящего поля и попадания на коллектор.

Рис. 5. Схема время-пролётного масс-анализатора. Пакет ионов с массами m 1 и m 2 (чёрные и белые кружки), «вброшенный» в анализатор через сетку 1, движется в дрейфовом пространстве 2 так, что тяжёлые ионы (m 1) отстают от лёгких (m 2); 3 - коллектор ионов.

Рис. 4. Пример масс-анализатора с двойной фокусировкой. Пучок ускоренных ионов, вышедших из щели S 1 источника ионов, последовательно проходит через электрическое поле цилиндрического конденсатора, который отклоняет ионы на 90°, затем через магнитное поле, отклоняющее ионы ещё на 60°, и фокусируется в щель S 2 приёмника коллектора ионов.

Рис. 3. Схема статического магнитного анализатора с однородным магнитным полем; S 1 и S 2 - щели источника и приёмника ионов; ОАВ - область однородного магнитного поля Н , перпендикулярного плоскости рисунка, тонкие сплошные линии - границы пучков ионов с разными m/е; r - радиус центральной траектории ионов.

Рис. 2. Масс-спектр ториевого свинца (δm 50% - ширина пика на полувысоте; δm 10% - ширина пика на уровне 1 / 10 от максимальной интенсивности).

Рис. 1. Скелетная схема масс-спектрометра: 1 - система подготовки и введения исследуемого вещества; 2 - ионный источник; 3 - масс-анализатор; 4 - приемник ионов; 5 - усилитель; 6 - регистрирующее устройство; 7 - ЭВМ; 8 - система электрического питания; 9 - откачные устройства. Пунктиром обведена вакуумируемая часть прибора.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Масс-спектрометры" в других словарях:

    масс-спектрометры - Приборы для разделения ионизиров. частиц вещ ва (молекул, атомов) по их массам, осн. на воздействии магн. и электрич. полей на пучки ионов, летящих в вакууме. В м. с. ионы регистрир. электрич. методами, в масс спектрографах — по потемнению… … Справочник технического переводчика

    Масс-спектрометры - приборы для разделения ионизированных частиц вещества (молекул, атомов) по их массам, основанные на воздействии магнитных и электрических полей на пучки ионов, летящих в вакууме. В масс спектрометрах ионы регистрируются… … Энциклопедический словарь по металлургии

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png