Рассмотрим мультипликативную группу всех целых степеней двойки (2Z, ), где 2Z= {2 n | п е Z}. Аналогом этой группы на аддитивном языке является аддитивная группа четных целых чисел (2Z, +), 2Z = {2n | п е Z}. Дадим общее определение групп, частными примерами которых являются данные группы.

Определение 1.8. Мультипликативная группа (G, ) (аддитивная группа (G, +)) называется циклической, если она состоит из всех целых степеней (соответственно, всех целых кратных) одного элемента а е G, т.е. G = {а п | п е Z} (соответственно, G - {па | п е Z}). Обозначение: (а), читается: циклическая группа, порожденная элементом а.

Рассмотрим примеры.

  • 1. Примером мультипликативной бесконечной циклической группы может служить группа всех целых степеней некоторого фиксированного целого числа а Ф ±1, она обозначается а г. Таким образом, а г - {а).
  • 2. Примером мультипликативной конечной циклической группы является группа С„ корней n-й степени из единицы. Напомним, что корни n-й степени из единицы находятся

по формуле e k = cos---hisin^-, где к = 0, 1, ..., п - 1. Следо- п п

вательно, С„ =(е х)= {е х = 1, е х, ef = е 2 ,..., е" -1 = ?„_ х }. Вспомним, что комплексные числа е к, к = 1, ..., п - 1, изображаются точками единичной окружности, которые делят ее на п равных частей.

  • 3. Характерным примером аддитивной бесконечной циклической группы является аддитивная группа целых чисел Z, она порождается числом 1, т.е. Z = (1). Геометрически она изображается в виде целых точек числовой прямой. По существу так же изображается мультипликативная группа 2 7 - = (2), в общем случае a z = (а), где целое число а Ф ±1 (см. рис. 1.3). Это сходство изображений мы обсудим в параграфе 1.6.
  • 4. Выберем в произвольной мультипликативной группе G некоторый элемент а. Тогда все целые степени этого элемента образуют циклическую подгруппу (а) = {а п п е Z} G.
  • 5. Докажем, что аддитивная группа рациональных чисел Q сама не циклическая, а любые два ее элемента лежат в циклической подгруппе.

А. Докажем, что аддитивная группа Q не циклическая. Предположим противное: пусть Q = (-). Существует целое число Ь,

не делящее т. Поскольку - eQ = (-) = sn-|neZ>, то суще-

Ъ т/ { т J

ствует целое число гс 0 , такое что - = п 0 -. Но тогда т = n 0 kb,

откуда т:Ъ - пришли к противоречию.

Б. Докажем, что два произвольных рациональных числа -

с „ /1

и - принадлежат циклической подгруппе (-), где т есть наи- d т/

меньшее общее кратное чисел b и d. В самом деле, пусть т-Ьи

, а аи 1 /1 с cv 1 /1

и m = av, u, v е Z,тогда - = - = аи -е(-)и - = - = cv- е (-).

b Ьи т т/ a dv т т/

Теорема 1.3. Порядок циклической группы равен порядку порождающего элемента этой группы, т.е. |(а)| = |а|.

Доказательство. 1. Пусть |а| = «>. Докажем, что все натуральные степени элемента а различны. Предположим противное: пусть а к = а т и 0 к Тогда т - к - натуральное число и а т ~ к = е. Но это противоречит тому, что | а =°°. Таким образом, все натуральные степени элемента а различны, откуда следует бесконечность группы (а). Следовательно, | (а)| = °° = |а |.

2. Пусть | а | = п. Докажем, что (а) = {е - а 0 , а, а 2 , ..., а" -1 }. Из определения циклической группы вытекает включение {а 0 , а, а 2 , ..., o" 1-1 } с (а). Докажем обратное включение. Произвольный элемент циклической группы (а) имеет вид а т, где те Z. Разделим шнапс остатком: m-nq + r, где 0 п. Поскольку а п = е, то а т = а п я +г = а п ч? а г = а г е {а 0 , а, а 2 , ..., а"- 1 }. Отсюда (а) с {а 0 , а, а 2 ,..., Таким образом, (а) = {а 0 , а, а 2 ,..., а" -1 }.

Остается доказать, что все элементы множества {а 0 , а, а 2 , ..., а” -1 } различны. Предположим противное: пусть 0 i п, но а" = а). Тогда оН - е и 0 j - i - пришли к противоречию с условием | а | = п. Теорема доказана.

Подгруппы циклических групп

Следующая теорема описывает строение подгрупп циклических групп.

Теорема 1.4. Подгруппа циклической группы циклическая. Если G = (a)uH - неединичная подгруппа группы G,moH = (а п), где п - наименьшее натуральное число, такое что а п е Н.

Доказательство. Пусть G = (а) и Н - подгруппа группы G. Если подгруппа Н единичная, то Н = (е) - циклическая группа. Пусть Н - неединичная подгруппа. Обозначим через п наименьшее натуральное число, такое что а п е Н, и докажем, что Н = (а п). Включение (а п ) с Н очевидно. Докажем обратное включение. Пусть h е Н. Поскольку G = (а), то существует целый показатель к, такой что h = а к. Разделим к на п с остатком: к = nq + г, где 0 п. Если предположить, что г Ф 0, то получим h = а к = а па п ч а г, откуда a r = а~ п чН е Н. Пришли к противоречию с минимальностью показателя п. Следовательно, г = 0 и к - nq. Отсюда h = a k = а п ч е а"). Таким образом, Н с (а п), а значит, Н = (а п). Теорема доказана.

Порождающие элементы циклической группы

Какими элементами может порождаться циклическая группа? Отвечают на этот вопрос следующие две теоремы.

Теорема 1.5. Пусть дана циклическая группа G = (а) бесконечного порядка. Тогда (а) - (а к) тогда и только тогда, когда к - ± 1.

Доказательство. Пусть G = (а), |а| = °° и (а) = (а к). Тогда существует целое число п, такое что а = а кп. Отсюда а*" -1 = е, а так как | а = то кп - 1 = 0. Но тогда кп = 1 ик- ± 1. Обратное утверждение очевидно.

Теорема 1.6. Пусть дана циклическая группа G = (а) порядка т. Тогда (а) = (а к) тогда и только тогда, когда НОД(/с, т) = 1.

Доказательство. (=>) Пусть (а) = (а к), докажем, что НОД(/с, т) - 1. Обозначим НОДЦс, т) - d. Поскольку а е (а) - (а к), то а = а кп при некотором целом п. По свойству порядков элементов отсюда следует, что (1 - кп) : т, т.е. 1 - кп = mt при некотором целом t. Но тогда 1 = (кп + mt) : d, откуда d = 1 и НОД(/с, т) = 1.

(Пусть НОД (к, т) = 1. Докажем, что (а) = (а к). Включение (а к) с (а) очевидно. Обратно, из условия НОД№, т) = 1 следует существование целых чисел и и v, таких что ки + mv = 1. Пользуясь тем, что | а | - т, получаем а = a ku+mv = a ku a mv = а ки е (а к ). Следовательно, (а) = (а к ). Теорема доказана.

Напомним, что функция Эйлера ф(т) определяется как количество натуральных чисел, не превосходящих натурального числа т и взаимно простых с т. Отсюда получаем следствие.

Следствие. Циклическая группа (а) порядка т имеет ф(т) различных порождающих элементов.

Для придания геометрической наглядности теореме 1.5 изобразим циклическую группу G = (а) порядка т точками окружности А 0 , А ь..., А т _ ь делящими ее на т равных частей. Элемент а к данной группы, соответствующий точке А к, будет порождающим тогда и только тогда, когда, соединяя последовательно точки А 0 , А к, А 2к и т.д., мы придем в точку А]. Найдем все такие к при т = 10 простым перебором случаев (рис. 1.5). В результате получим к = 1,3, 7, 9. Для циклической группы (а) это означает, что (а) = (а 3) = (а 7) = (а 9). Обратно: найдя к, взаимно простое с данным числом т, можно смело вычерчивать соответствующую «звездочку», твердо зная, что рано или поздно попадешь в каждую точку, ибо (а) = (а к).

Пусть g – произвольный элемент группы G. Тогда, принимая , мы получим минимальную подгруппу
, порожденную одним элементом
.

Определение. Минимальная подгруппа
, порожденная одним элементом g группы G, называетсяциклической подгруппой группы G.

Определение. Если вся группа G порождена одним элементом, т.е.
, то она называетсяциклической группой .

Пусть элемент мультипликативной группы G, тогда минимальная подгруппа, порожденная этим элементом, состоит из элементов вида

Рассмотрим степени элемента , т.е. элементы

.

Имеются две возможности:

1. Все степени элемента g различны, т.е.

, то в этом случае говорят, что элемент g имеет бесконечный порядок.

2. Имеются совпадения степеней, т.е. , но
.

В этом случае элемент g имеет конечный порядок.

Действительно, пусть, например,
и
, тогда,
, т.е. существуют положительные степени
элемента
, равные единичному элементу.

Пусть d – наименьший положительный показатель степени элемента , для которого
. Тогда говорят, что элемент
имеет конечный порядок равный d.

Вывод. В любой группе G конечного порядка (
) все элементы будут конечного порядка.

Пусть g элемент мультипликативной группы G, тогда мультипликативная подгруппа
состоит из всех различных степеней элемента g. Следовательно, число элементов в подгруппе
совпадает с порядком элемента т. е.

число элементов в группе
равно порядку элемента ,

.

С другой стороны, имеет место следующее утверждение.

Утверждение. Порядок любого элемента
равен порядку минимальной подгруппы, порожденной этим элементом
.

Доказательство. 1.Если – элемент конечного порядка , то

2. Если – элемент бесконечного порядка, то доказывать нечего.

Если элемент имеет порядок, то, по определению, все элементы

различны и любая степень совпадает с одним из этих элементов.

Действительно, пусть показатель степени
, т.е.– произвольное целое число и пусть
. Тогда числоможно представить в виде
, где
,
. Тогда, используя свойства степени элемента g, получаем

.

В частности, если .

Пример. Пусть
– аддитивнаяабелева группа целых чисел. Группа G совпадает с минимальной подгруппой порожденной одним из элементов 1 или –1:

,

следовательно,
– бесконечная циклическая группа.

Циклические группы конечного порядка

В качестве примера циклической группы конечного порядка рассмотрим группу вращений правильного n-угольника относительно его центра
.

Элементами группы

являются повороты n-угольникапротив часовой стрелки на углы

Элементами группы
являются

,

а из геометрических соображений ясно, что

.

Группа
содержитn элементов, т.е.
, а образующим элементом группы
является, т.е.

.

Пусть
, тогда (см. рис. 1)

Рис. 1 Группа – вращений правильного треугольника АВС относительно центра О.

Алгебраическая операция  в группе – последовательное вращение против часовой стрелки, на угол, кратный, т.е.

Обратный элемент
– вращение по часовой стрелке на угол 1 , т.е.

.

Таблица К э ли

Анализ конечных групп наиболее наглядно осуществлять с помощью таблицы Кэли, которая является обобщением известной «таблицы умножения».

Пусть группа G содержит n элементов.

В этом случае таблица Кэли представляет собой квадратную матрицу имеющую n строк и n столбцов.

Каждой строке и каждому столбцу соответствует один и только один элемент группы.

Элемент таблицы Кэли, стоящий на пересечении i-той строки и j-того столбца, равен результату выполнения операции «умножения» i-го элемента с j-тым элементом группы.

Пример . Пусть группа G содержит три элемента{g 1 ,g 2 ,g 3 }.Операция в группе «умножение».В этом случае таблица Кэли имеет вид:

Замечание. В каждой строке и каждом столбце таблицы Кэли находятся все элементы группы и только они. Таблица Кэли содержит полную информацию о группе.Что можно сказать о свойствах этой группы?

1. Единичным элементом этой группы является g 1 .

2.Группа абелева т.к. таблица симметрична относительно главной диагонали.

3.Для каждого элемента группы существуют обратные-

для g 1 обратным является элемент g 1 , для g 2 элемент g 3 .

Построим для групп таблицу Кели.

Для нахождения обратного элемента элементу, например, , необходимо в строке, соответствующей элементунайти столбецj содержащий элемент . Элементсоответствующий данному столбцу и является обратным к элементу, т.к.
.

Если таблица Кели симметрична относительно главной диагонали, то это означает, что

– т.е. операция в рассматриваемой группе коммутативна. Для рассматриваемого примера таблица Кели симметрична относительно главной диагонали это означает, что операция в коммутативна, т.е.
,

а группа – абелева.

Можно рассматривать полную группу преобразований симметрий правильного n – угольника , добавив к операции вращения дополнительные операции пространственного поворота вокруг осей симметрии.

Для треугольника
, а группа содержит шесть элементов

где
это повороты (см. рис. 2) вокруг высоты, медианы, биссектрисы имеют вид:

;

,

,
.

Рис. 2. – Группа – преобразований симметрии правильного треугольника АВС.

подгруппа называется циклической подгруппой . Термин возведение в степень здесь означает многократное применение к элементу групповой операции:

Множество, полученное в результате этого процесса, обозначается в тексте как . Обратите внимание также, что a 0 = e .

Пример 5.7

Из группы G = < Z 6 , +> могут быть получены четыре циклических подгруппы. Это H 1 = <{0},+>, H 2 =<{0, 2, 4}, +>, H 3 = <{0, 3}, +> и H 4 = G . Заметим, что когда операция - сложение, то a n означает умножение n на a . Заметим также, что во всех этих группах операция - это сложение по модулю 6 . Ниже показано, как мы находим элементы этих циклических подгрупп .

a. Циклическая подгруппа , сгенерированная из 0 , - это H 1 , имеет только один элемент (нейтральный элемент).

б. Циклическая подгруппа , сгенерированная на основе 1 , - это H 4 , которая есть сама группа G .

1 0 mod 6 = 0 1 1 mod 6 = 1 1 2 mod 6 = (1 + 1) mod 6 = 2 1 3 mod 6 = (1 + 1 + 1) mod 6 = 3 1 4 mod 6 = (1 + 1 + 1 + 1) mod 6 = 4 1 5 mod 6 = (1 + 1 + 1 + 1 + 1) mod 6 = 5(остановка, далее процесс повторяется)

в. Циклическая подгруппа , сгенерированная на основе 2 , - это H 2 , которая имеет три элемента: 0, 2 , и 4 .

2 0 mod 6 = 0 2 1 mod 6 = 2 2 2 mod 6 = (2 + 2) mod 6 = 4 (остановка, далее процесс повторяется)

г. Циклическая подгруппа , сгенерированная на основе 3 , - это H 3 , которая имеет два элемента: 0 и 3 .

д. Циклическая подгруппа , сгенерированная на основе 4 , - H 2 ; это - не новая подгруппа .

4 0 mod 6 = 0 4 1 mod 6 = 4 4 2 mod 6 = (4 + 4) mod 6 = 2 (остановка, далее процесс повторяется)

е. Циклическая подгруппа , сгенерированная на основе 5 , - это H 4 , она есть сама группа G .

5 0 mod 6 = 0 5 1 mod 6 = 5 5 2 mod 6 = 4 5 3 mod 6 = 3 5 4 mod 6 = 2 5 5 mod 6 = 1 (остановка, далее процесс повторяется)

Пример 5.8

Из группы можно получить три циклических подгруппы. G имеет только четыре элемента: 1, 3, 7 и 9 . Циклические подгруппы - и . Ниже показано, как мы находим элементы этих подгрупп .

a. Циклическая подгруппа , сгенерированная на основе 1 , - это H 1 . Подгруппа имеет только один элемент, а именно - нейтральный.

б. Циклическая подгруппа , сгенерированная на основе 3 , - это H 3 , которая есть группа G .

3 0 mod 10 = 1 3 1 mod 10 = 3 3 2 mod 10 = 9 3 3 mod 10 = 7 (остановка, далее процесс повторяется)

в. Циклическая подгруппа , сгенерированная на основе 7 , - это H 3 , которая есть группа G .

7 0 mod 10 = 1 7 1 mod 10 = 7 7 2 mod 10 = 9 7 3 mod 10 = 3 (остановка, далее процесс повторяется)

г. Циклическая подгруппа , сгенерированная на основе 9 , - это H 2 . Подгруппа имеет только два элемента.

9 0 mod 10 = 1 9 1 mod 10 = 9 (остановка, далее процесс повторяется)

Циклические группы

Циклическая группа - группа, которая является собственной циклической подгруппой . В примере 5.7 группа G имеет циклическую подгруппу H 5 = G . Это означает, что группа G - циклическая группа. В этом случае элемент, который генерирует циклическую подгруппу, может также генерировать саму группу. Этот элемент далее именуется "генератор". Если g - генератор, элементы в конечной циклической группе могут быть записаны как

{e,g,g 2 ,….., g n-1 } , где g n = e .

Заметим, что циклическая группа может иметь много генераторов.

Пример 5.9

а. Группа G = - циклическая группа с двумя генераторами, g = 1 и g = 5 .

б. Группа - циклическая группа с двумя генераторами, g = 3 и g = 7 .

Теорема Лагранжа

Теорема Лагранжа показывает отношение между порядком группы к порядку ее подгруппы. Предположим, что G - группа и H - подгруппа G . Если порядок G и H - |G| и |H| , соответственно, то согласно этой теореме |H| делит |G| . В примере 5.7 |G| = 6 . Порядок подгруппы - |H1| = 1, | H2| = 3, |H3| = 2 и |H4| = 6 . Очевидно, все эти порядки есть делители 6 .

Теорема Лагранжа имеет очень интересное приложение. Когда дана группа G и ее порядок |G| , могут быть легко определены порядки потенциальных подгрупп , если могут быть найдены делители. Например, порядок группы G = - это |17| . Делители 17 есть 1 и 17 . Это означает, что эта группа может иметь только две подгруппы - нейтральный элемент и H 2 = G .

Порядок элемента

Порядок элемента в группе ord (a) (порядок (a)) является наименьшим целым числом n , таким, что a n = e . Иными словами: порядок элемента - порядок группы, которую он генерирует.

Пример 5.10

a. В группе G = , порядки элементов: порядок ord(0) = 1 , порядок ord (1) = 6 , порядок ord (2) = 3 , порядок ord (3) = 2 , порядок ord (4) = 3 , порядок ord (5) = 6 .

b. В группе G = , порядки элементов: порядок ord (1) = 1 , порядок ord (3) = 4 , порядок ord (7) =4 , порядок (9) = 2 .

  • 1. Группа Z целых чисел с операцией сложения.
  • 2. Группа всех комплексных корней степени n из единицы с операцией умножения. Поскольку циклический число изоморфизм

группа является циклической и элемент образующий.

Мы видим, что циклические группы могут быть как конечными так и бесконечными.

3. Пусть - произвольная группа и произвольный элемент. Множество является циклической группой с образующим элементом g . Она называется циклической подгруппой, порожденной элементом g, а ее порядок - порядком элемента g. По теореме Лагранжа порядок элемента является делителем порядка группы. Отображение

действующее по формуле:

очевидно является гомоморфизмом и его образ совпадает с. Отображение сюръективно тогда и только тогда, когда группа G - циклическая и g ее образующий элемент. В этом случае будем называть стандартным гомоморфизмом для циклической группы G c выбранной образующей g .

Применяя в этом случае теорему о гомоморфизме, мы получаем важное свойство циклических групп: всякая циклическая группа является гомоморфным образом группы Z .

В любой группе G могут быть определены степени элемента с целыми показателями:

Имеет место свойство

Это очевидно, если . Рассмотрим случай, когда . Тогда

Аналогично рассматриваются остальные случаи.

Из (6) следует, что

Кроме того, по определению. Таким образом, степени элемента образуют подгруппу в группе G. Она называется циклической подгруппой, порожденной элементом, и обозначается через.

Возможны два принципиально разных случая: либо все степени элемента различны, либо нет. В первом случае подгруппа бесконечна. Рассмотрим более подробно второй случай.

Пусть ,; тогда. Наименьшее из натуральных чисел т, для которых, называется в этом случае порядком элемента и обозначается через .

Предложение 1. Если , то

Доказательство . 1) Разделим m на п с остатком:

Тогда в силу определения порядка

В силу предыдущего

Следствие. Если, mo подгруппа содержит n элементов.

Доказательство. Действительно,

причем все перечисленные элементы различны.

В том случае, когда не существует такого натурального т, что (т.е. имеет место первый из описанных выше случаев), полагают. Отметим, что; порядки же всех остальных элементов группы больше 1.

В аддитивной группе говорят не о степенях элемента , а о его кратных, которые обозначают через . В соответствии с этим порядок элемента аддитивной группы G -- это наименьшее из натуральных чисел т (если такие существуют), для которых

ПРИМЕР 1. Характеристика поля есть порядок любого ненулевого элемента в его аддитивной группе.

ПРИМЕР 2 . Очевидно, что в конечной группе порядок любого элемента конечен. Покажем, как вычисляются порядки элементов группы Подстановка называется циклом длины и обозначается через если она циклически переставляет

а все остальные числа оставляет на месте. Очевидно, что порядок цикла длины равен р. Циклы и называются независимыми, если среди фактически переставляемых ими чисел нет общих; в этом случае . Всякая подстановка однозначно разлагается в произведение независимых циклов. Например,

что наглядно показано на рисунке, где действие подстановки изображено стрелками. Если подстановка разлагается в произведение независимых циклов длин , то

ПРИМЕР 3. Порядок комплексного числа с в группе конечен тогда и только тогда, когда это число есть корень некоторой степени из единицы, что, в свою очередь, имеет место тогда и только тогда, когда, a соизмерим с, т.е. .

ПРИМЕР 4. Найдем элементы конечного порядка в группе движений плоскости. Пусть. Для любой точки точки

циклически переставляются движением , так что их центр тяжести о неподвижен относительно. Следовательно, - либо поворот на угол вида вокруг точки о , либо отражение относительно некоторой прямой, проходящей через о .

ПРИМЕР 5 . Найдем порядок матрицы

как элемента группы. Имеем

так что. Конечно, этот пример специально подобран: вероятность того, что порядок наудачу выбранной матрицы будет конечен, равна нулю.

Предложение 2. Если , то

Доказательство. Пусть

так что. Имеем

Следовательно, .

Определение 1 . Группа G называется циклической, если существует такой элемент , что . Всякий такой элемент называется порождающим элементом группы G.

ПРИМЕР 6. Аддитивная группа целых чисел является циклической, так как порождается элементом 1.

ПРИМЕР 7. Аддитивная группа вычетов по модулю n является циклической, так как порождается элементом .

ПРИМЕР 8. Мультипликативная группа комплексных корней n-й степени из 1 является циклической. В самом деле, эти корни суть числа

Ясно, что . Следовательно, группа порождается элементом.

Легко видеть, что в бесконечной циклической группе порождающими элементами являются только и. Так, в группе Z порождающими элементами являются только 1 и -- 1.

Число элементов конечной группы G называется ее порядком и обозначается через. Порядок конечной циклической группы равен порядку ее порождающего элемента. Поэтому из предложения 2 следует

Предложение 3 . Элемент циклической группы порядка n является порождающим тогда и только тогда, когда

ПРИМЕР 9. Порождающие элементы группы называются первообразными корнями n -й степени из 1. Это корни вида , где. Например, первообразные корни 12-й степени из 1- это.

Циклические группы -- это наиболее простые группы, которые можно себе представить. (В частности, они абелевы.) Следующая теорема дает их полное описание.

Теорема 1. Всякая бесконечная циклическая группа изоморфна группе. Всякая конечная циклическая группа порядка п изоморфна группе.

Доказательство . Если -- бесконечная циклическая группа, то в силу формулы (4) отображение есть изоморфизм.

Пусть -- конечная циклическая группа порядка п. Рассмотрим отображение

то отображение корректно определено и биективно. Свойство

вытекает из той же формулы (1). Таким образом, -- изоморфизм.

Теорема доказана.

Для понимания строения какой-либо группы важную роль играет знание ее подгрупп. Все подгруппы циклической группы могут быть легко описаны.

Теорема 2. 1) Всякая подгруппа циклической группы является циклической.

2)В циклической группе порядка n порядок любой подгруппы делит n и для любого делителя q числа n существует ровно одна подгруппа порядка q.

Доказательство . 1) Пусть -- циклическая группа и Н -- ее подгруппа, отличная от (Единичная подгруппа, очевидно, является циклической.) Заметим, что если для какого-либо, то и . Пусть т -- наименьшее из натуральных чисел, для которых. Докажем, что . Пусть . Разделим к на т с остатком:

откуда в силу определения числа т следует, что и, значит,.

2) Если , то предыдущее рассуждение, примененное к (в этом случае ), показывает, что . При этом

и Н является единственной подгруппой порядка q в группе G. Обратно, если q -- любой делитель числа п и, то подмножество Н, определяемое равенством (9), является подгруппой порядка q. Теорема доказана.

Следствие . В циклической группе простого порядка любая неединичная подгруппа совпадает со всей группой.

ПРИМЕР 10. В группе всякая подгруппа имеет вид, где.

ПРИМЕР 11. В группе корней n-й степени из 1 любая подгруппа есть группа корней q- й степени из 1, где.

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png