Если допустить, что в одной хромосоме находится более одного гена, то возникает вопрос - могут ли аллели одного гена в гомологичной паре хромосом меняться местами, перемещаясь из одной гомологичной хромосомы в другую. Если бы такой процесс был невозможен, то гены комбинировались бы только в результате случайного расхождения негомологичных хромосом в мейозе. При этом гены, находящиеся в одной паре гомологичных хромосом, наследовались бы всегда сцепленно - одной группой.

Исследования Т. Моргана и его сотрудников, выполненные в начале XX века, показали, что в гомологичной паре хромосом регулярно происходит обмен генами. Процесс обмена идентичными участками гомологичных хромосом с содержащимися в них генами называют перекрестом хромосом или кроссинговером . В результате кроссинговера в гомологичных хромосомах возникают новые сочетания генов. Кроссинговер был обнаружен у всех организмов - животных, растений и микроорганизмов. Обмен идентичными участками между гомологичными хромосомами обеспечивает рекомбинацию генов. Это имеет большое значение для эволюции.

Кроссинговер можно обнаружить, учитывая частоты возникновения организмов с новым сочетанием признаков. Такие организмы называются рекомбинантами .

Явление кроссинговера было открыто на дрозофиле. Рассмотрим один из классических опытов Т.Моргана, позволивший ему доказать, что гены находятся в хромосомах в определенном порядке. У дрозофилы рецессивный ген черной окраски тела обозначают символом b, а его доминантный аллель, определяющий дикую серую окраску, - b + . Мутантный ген рудиментарных крыльев дрозофилы обозначают символами vg, а его нормальный аллель vg + .

При скрещивании мух, различающихся по двум парам сцепленных признаков, - серых с рудиментарными крыльями и черных с нормальными крыльями - гибриды F1 по фенотипу будут серыми и с нормальными крыльями:

Полученных в первом поколении мух (отдельно - самцов и отдельно самок) Т. Морган скрещивал с мухами гомозиготными по мутантным аллелям - чёрными с рудиментарными крыльями.

Если гомозиготными по обоим рецессивным генам брали самок, а гибридными дигетерозиготами были самцы, то в потомстве получали расщепление в отношении 1 (серые с рудиментарными крыльями) : 1 (черные с нормальными крыльями).

Такое расщепление показывает, что данная дигетерозигота обраpует гаметы только двух типов b + vg и b vg + . Сочетание генов в гаметах самца остаётся таким же, каким оно было у его родителей. Полученное расщепление показывает, что у самца не происходит обмена участками гомологичных хромосом. В дальнейшем выяснилось, что у самцов дрозофилы действительно, как в аутосомах, так и в половых хромосомах в норме кроссинговер не происходит. Поэтому при анализирующем скрещивании в потомстве появляются только две исходные родительские комбинации признаков в равных количествах. В данном случае наблюдается полное сцепление генов, находящихся в одной паре гомологичных хромосом.


Если для анализа взять гетерозиготными не самцов, а самок, то в Ра происходит другое расщепление. Кроме родительских комбинаций признаков появляются 2 новых типа – мухи с черным телом и рудиментарными крыльями, а также мухи с серым телом и нормальными крыльями.

В этом скрещивании сцепление тех же генов нарушается за счет того, что гены в гомологичных хромосомах поменялись местами благодаря кроссинговеру. Описанное явление называют неполным сцеплением генов .

Анализирующие скрещивания, описанные выше:

Гаметы с хромосомами, претерпевшими кроссинговер, называют кроссоверными гаметами . Гаметы с хромосомами, не претерпевшими кроссинговер, называют некроссоверными гаметами . Соответственно организмы, возникшие от сочетания кроссоверных гамет гибрида с гаметами анализатора, называют кроссоверами или рекомбинантами. Организмы, возникшие от сочетания некроссоверных гамет с гаметами анализатора называют некроссоверными или нерекомбинантными.

При анализе расщепления по фенотипам было установлено, что в случае кроссинговера между двумя определёнными генами количественное отношение кроссоверных и некроссоверных классов всегда одно и то же. Обе исходные родительские комбинации признаков (серые с рудиментарными крыльями и чёрные с нормальными крыльями ), образовавшиеся из некроссоверных гамет, оказывались в потомстве анализирующего скрещивания в равном количественном отношении - примерно по 41,5%. В сумме некроссоверные мухи составили 83% от общего числа потомков. Два кроссоверных класса (чёрные мухи с зачаточными крыльями и мухи серые с нормальными крыльями) по числу особей были также одинаковы (по 8,5%). Суммарное количество кроссоверных особей было равно 17%.

Эти процентные соотношения сохранялись (с небольшими отклонениями в ту или иную сторону, обусловленными случайными причинами) при многократных повторениях этого эксперимента.

Законом сцепления Т. Моргана: гены, расположенные в одной хромосоме образуют одну группу сцепления и наследуются вместе.

Частота кроссинговера - это отношение числа кроссоверных особей к общему числу особей в потомстве от анализирующего скрещивания, выраженное в процентах.

Один процент перекреста был принят за единицу измерения частоты кроссинговера. Эта единица измерения в честь Т. Моргана была названа морганидой . Начиная с 80-х годов и в русскоязычной, и англоязычной литературе стали использовать термин сантиморган (краткое обозначение сМ). Таким образом, 1% кроссоверных особей = 1% перекрестов хромосом = 1% кроссинговера = 1 сантиморгану.

Величина перекреста хромосом отражает силу сцепления генов в хромосоме: чем она больше, тем меньше сила сцепления.

ЛИНЕЙНОЕ РАСПОЛОЖЕНИЕ ГЕНОВ В ХРОМОСОМЕ

Альфред Генри Стёртевант, ученик и сотрудник Т. Моргана, предположил, что частота кроссинговера отражает относительное расстояние между генами. Тогда, чем чаще происходит кроссинговер, тем дальше друг от друга расположены гены в хромосоме. Чем реже происходит кроссинговер, тем ближе друг к другу находятся гены.

Полагая, что частота кроссинговера зависит от расстояния между генами, А. Стёртевант проанализировал результаты многих экспериментов и в 1911 году установил ещё один закон наследственности - закон аддитивности . А. Стёртевант изучал частоты кроссинговера между тремя генами, расположенными в одной хромосоме (обозначим их А, В и С). Он установил, что если сравнивать частоты перекреста между генами А и В, В и С, А и С, то частота кроссинговера между двумя любыми из них, например А и С, близка к сумме его величин между генами А–В и С–В, т.е. АС% = АВ% + ВС%. Таким образом, наблюдается сложение расстояний между генами, определенных по частоте кроссинговера между ними. Эта закономерность соответствует обычной геометрической закономерности в расстояниях между точками на прямой. Отсюда, как следствие закона аддитивности, вытекало, что гены расположены в хромосомах в линейной последовательности и находятся на определенных расстояниях друг от друга .

Одним из классических опытов Моргана на дрозофиле, доказывающим линейное расположение генов, был следующий. Самки, гетерозиготные по трем сцепленным рецессивным генам, определяющим желтую окраску тела y , белый цвет глаз w и вильчатые крылья bi , были скрещены с самцами, гомозиготными по этим трем генам. В потомстве было получено 1,2% мух кроссоверных, возникших от перекреста между генами у и w ; 3,5% − от кроссинговера между генами w и bi и 4,7% - между у и bi .

Из этих данных с очевидностью вытекает, что процент перекреста является функцией расстояния между генами. Поскольку расстояние между крайними генами у и bi равно сумме двух расстояний между у и w ,w и bi , следует предположить, что гены расположены в хромосоме последовательно, т.е. линейно:

Многочисленные повторения описанных выше экспериментов Т.Моргана, выполненные другими генетиками, постоянно давали практически одни и те же результаты. Воспроизводимость этих результатов в повторных опытах указывает на то, что местоположение генов в хромосоме строго фиксировано, т.е. каждый ген занимает в хромосоме свое определенное место. Фиксированное место, где расположен конкретный ген, получило название локус .

ОДИНАРНЫЙ И МНОЖЕСТВЕННЫЙ ПЕРЕКРЕСТЫ ХРОМОСОМ

Приняв положения, что 1) генов в хромосоме может быть много, 2) гены расположены в хромосоме в линейном порядке и 3) каждая аллельная пара занимает определенные и идентичные локусы в гомологичных хромосомах, Т. Морган предположил, что перекресты между двумя гомологичными хромосомами могут происходить одновременно в нескольких точках. Это предположение было им доказано на дрозофиле. Позже оно было подтверждено в экспериментах на других животных, а также растениях и микроорганизмах.

Кроссинговер, происходящий лишь в одном месте, называют одинарным , в двух точках одновременно - двойным, в трех - тройным и т. д., т.е. кроссинговер может быть множественным .

Пример. Были скрещены особи ABC/abc x abc/abc. Перекрест происходит вследующих точках между генами A и B, а также B и C.

Результаты скрещевания:

Общая численность особей, полученных в этом опыте, - 521. Определяем число особей с одиночным перекрестом в участке 1: 37+42=79. К числу особей с одиночным перекрестом добавляем число особей с двойным пере­крестом. Общее число особей с перекрестом в участке 1 равно 79+14=93. Выраженное в процентах от общего числа особей (521), это число отражает расстояние между локусами аллельных пар А-а и В-b, а также частоту перекреста. Таким же путем можно определить общее число особей с пере­крестом в участке 2 (70+65+8+6=149). Следовательно, частота перекреста в участке 2 будет равна 28,60%. Необходимо принять во внимание, что 14 особей с двойным перекрестом учтены при подсчете частоты перекреста как в участке 1, так и в участке 2.

Другое обстоятельство, которое следует иметь в виду в отношении двойных перекрестов, состоит в том, что они затрагивают только среднюю часть хромосомы между локусами А-а и С-с. Таким образом, при двой­ных перекрестах изменяется только положение генов В и b, а расположение локусов А-а и С-с остается неизменным. Если мы не проконтролируем наследования генов В-b, то будет невозможно определить наличие двойных перекрестов. Частота перекрестов, определяемая непосредственно по сцепле­нию между генами А и С, без учета передачи генов В-b будет менее достоверной. В нашем примере всего у 214 особей из 521 обнаруживается перекрест между локусами А и С, следовательно, частота его равна 41,07%. Эту величину можно сравнить с суммой вычисленных ранее значений для перекрестов в участках 1 и 2. Эти значения были равны 17,85 и 28,60%, что дает в сумме 46,45%, т. е. на 5,38 единицы больше величины, полученной непосредственным определением частоты перекреста между локусами А и С.

Определение расстояния от А до С осуществляют следующим образом: к сумме процентов одинарных кроссоверных классов (41,1%) прибавляют удвоенный процент двойных кроссоверов (2,7x2 = 5,4%). Удвоение процента двойных кроссоверов необходимо потому, что каждый двойной кроссинговер возникает благодаря двум независимым одинарным разрывам в двух точках. Поэтому, чтобы вычислить процент одинарного кроссинговера, необходимо величину двойного кроссинговера умножить на 2.

ИНТЕРФЕРЕНЦИЯ

Интерференция - это явление, при котором кроссинговер, произошедший в одном участке хромосомы, препятствует перекресту хроматид в близлежащих участках конъюгировавших хромосом. Установлено, что в опыте процент двойных кроссоверных особей часто оказывается ниже теоретически ожидаемого. Одной из причин, снижающих наблюдаемую величину кроссинговера, оказывается процесс подавления второго кроссинговера вблизи того пункта, где обмен уже произошел. Кроссинговер, произошедший в одном месте хромосомы, подавляет кроссинговер в близлежащих районах. Это явление носит название интерференции. Особенно сильно сказывается интерференция на подавлении двойного кроссинговера при малых расстояниях между генами. Если гены А, В и С близко расположены близко друг к другу, то одинарный обмен на участке между генами А и В подавляет кроссинговер на участке между В и С. Разрывы хромосом оказываются зависимыми друг от друга. Степень этой зависимости определяется расстоянием между происходящими разрывами: по мере удаления от места разрыва возможность другого разрыва увеличивается.

Величина интерференции может быть измерена. Для этого необходимо маркировать хромосому на большом протяжении генами, место и последовательность расположения которых известны. Зная место и последовательность расположения генов в хромосоме, можно рассчитать теоретически ожидаемую частоту двойных перекрестов. Величина интерференции измеряется отношением числа наблюдаемых двойных разрывов к числу возможных двойных разрывов при допущении полной независимости каждого из них.

Объясним это на рассмотренном ранее примере. Было установлено, что гены А и В разделены расстоянием 17,9 сМ, а В и С - расстоянием 28,6 сМ. Если разрывы на участках АВ и ВС происходят как независимые друг от друга и случайные события, то вероятность двойного кроссинговера между генами А и С должна быть равна произведению процентов кроссинговера на участках АВ (17,9%) и ВС (28,6%), т.е. (17,9: 100) х (28,6: 100) х 100% = 5,12%

Но в опыте мы получили среди 521 особи всего 14 особей, возникших как следствие двойного кроссинговера, что соответствует 2,68%. Полученный в опыте процент значительно ниже ожидаемого. Это снижение и объясняется наличием интерференции.

Итак, интерференцию измеряют отношением наблюдаемого числа двойных, перекрестов к теоретически ожидаемому. Это отношение называют величиной совпадения или коинциденцией , и выражают в долях единицы, или в процентах. В приведенном примере коинциденция равна 2,68:5,12=0,52, или 52%.

Назовите тип и фазу деления клеток, изображённых на рисунках. Какие процессы они иллюстрируют? К чему приводят эти процессы?

Пояснение.

1) Тип и фаза деления: Мейоз - профаза1.

2) Процессы: кроссинговер, обмен гомологичными участками хромосом. Взаимный обмен участками между гомологичными (попарными) хромосомами.

3) Результат: новая комбинация аллелей генов, следовательно комбинативная изменчивость

Примечание:

в пункте 2 был указан процесс «конъюгация», убран из критериев, т.к.

Конъ­юга­ция хро­мо­сом - по­пар­ное вре­мен­ное сбли­же­ние го­мо­ло­гич­ных хро­мо­сом, во время ко­то­ро­го между ними может про­изой­ти обмен го­мо­ло­гич­ны­ми участ­ка­ми (а может и не произойти).

Пояснение от "пользователя" сайта Евгения Скляр - уточнения к пункту 2. Тоже засчитаются проверяющими «как верные»

2) Процессы: конъюгация (синапсис) - сближение и контакт гомологичных хромосом, кроссинговер - обмен гомологичными участками хромосом.

3) Результат: новая комбинация аллелей генов, следовательно повышение генетической разнородности хромосом и, как следствие, образующихся гамет (спор).

Без комбинативной изменчивости, т.к. об изменчивости можно говорить только судя по новому поколению организмов.

Си́напсис - конъюгация хромосом, попарное временное сближение гомологичных хромосом, во время которого между ними может произойти обмен гомологичными участками... (учебник для профильных классов под ред. Шумного)

Следовательно кроссинговер - есть часть конъюгации как минимум по временным рамкам.

Источник: ЕГЭ по биологии 30.05.2013. Основная волна. Сибирь. Вариант 4., ЕГЭ- 2017

Гость 19.08.2015 17:20

В пояснении ошибка. На рисунке изображен процесс кроссинговера: 1. бивалент до кроссинговера, 2. бивалент после крассинговера.

КОНЪЮГАЦИИ НА РИСУНКЕ НЕТ.

Гульнара 01.06.2016 13:49

Кроссинговер это и есть обмен гомологичными участками хромосом, зачем отдельно через запятую писать кроссинговер, обмен участками гомологичный хромосом???

Наталья Евгеньевна Баштанник

нет, это три разных процесса:

конъюгация, кроссинговер, обмен гомологичными участками хромосом

Светлана Васильева 17.11.2016 02:56

Кроссинговер может произойти без конъюгации???? Конъюгация (сближение гомологичных хромосом) происходит всегда, а вот кроссинговер не всегда, только в 30%! Кроссинговер - это контакт гомологичных хромосом, после чего между их идентичными участками происходит обмен..... или не так?

Наталья Евгеньевна Баштанник

В чём суть вопроса?

Кроссинговер - это перекрест , взаимный обмен гомологичными участками гомологичных хромосом в результате разрыва и соединения в новом порядке их нитей - хроматид; приводит к новым комбинациям аллелей разных генов.

Почему 30%??? Вероятность кроссинговера разная , зависит от расстояния между генами. 1% кроссинговера=1М (Морганиде).

Если произошел кроссинговер - перекрест, это ещё не значит, что произойдет обмен.

Кроссинговер (crossing-over): обмен генетического материала между хромосомами , как результат "разрыва" и соединения хромосом; процесс обмена участками хромосом при перекресте хромосом (рис. 118 , Б4).

Во время пахитены (стадия толстых нитей), гомологичные хромосомы находятся в состоянии конъюгации длительный период: у дрозофилы - четверо суток, у человека больше двух недель. Все это время отдельные участки хромосом находятся в очень тесном соприкосновении. Если в таком участке произойдет разрыв цепочек ДНК одновременно в двух хроматидах, принадлежащих разным гомологам, то при восстановлении разрыва может получиться так, что ДНК одного гомолога окажется соединенной с ДНК другой, гомологичной хромосомы. Этот процесс носит -название кроссинговера (англ. crossing-over - перекрест).

Поскольку кроссинговер - взаимный обмен гомологичными участками хромосом между гомологичными (парными) хромосомами исходных гаплоидных наборов - особи имеют новые, различающиеся между собой генотипы. При этом достигается перекомбинация наследственных свойств родителей, что увеличивает изменчивость и дает более богатый материал для естественного отбора.

Гены перемешиваются благодаря слиянию гамет двух различных особей, однако генетические изменения осуществляются не только этим путем. Никакие два потомка одних и тех же родителей (если только это не идентичные близнецы) не будут абсолютно одинаковыми. Во время мейоза осуществляются два различных вида пересортировки генов.

Один вид пересортировки - это результат случайного распределения разных материнских и отцовских гомологов между дочерними клетками при первом делении мейоза , каждая гамета получает свою, отличную от других выборку материнских и отцовских хромосом. Из этого следует, что клетки любой особи могут в принципе образовать 2 в степени n генетически различающихся гамет, где n - гаплоидное число хромосом. Однако на самом деле число возможных гамет неизмеримо больше из-за кросинговера (перекреста) - процесса, происходящего во время длительной профазы первого деления мейоза , когда гомологичные хромосомы обмениваются участками. У человека в каждой паре гомологичных хромосом кроссинговер происходит в среднем в 2 - 3 точках.

При кроссинговере происходит разрыв двойной спирали ДНК в одной материнской и одной отцовской хроматиде, а затем получившиеся отрезки воссоединяются "наперекрест" (процесс генетической рекомбинации). Рекомбинация происходит в профазе первого деления мейоза , когда две сестринские хроматиды так тесно сближены друг с другом, что их невозможно увидеть в отдельности. Гораздо позже в этой растянутой профазе становятся ясно различимы две отдельные хроматиды каждой хромосомы. В это время видно, что они связаны своими центромерами и тесно сближены по всей длине. Два гомолога остаются связанными в тех точках, где произошел кроссинговер между отцовской и материнской хроматидами. В каждой такой точке, которую называют хиазмой , две из четырех хроматид перекрещиваются Таким образом, это морфологический результат произошедшего кроссинговера, который сам по себе недоступен для наблюдения.

Кроссинговер (англ. crossing-over - перекрест хромосом) - процесс обмена гомологичных хромосом участками во время их конъюгации в профазе I мейоза. Кроссинговер является одним из механизмов генетической рекомбинации (обмена генами) . Частота его зависит от расстояния между генами: чем дальше расположены гены друг от друга, тем чаще между ними идет перекрест. 1% кроссинговера принят за единицу расстояния между генами. Она названа морганидой в честь Т. Моргана, разработавшего принципы генетического картирования . Цитологическим признаком кроссинговера служат хиазмы - χ-образные фигуры бивалентов во время обмена участками. Кроссинговер обычно бывает мейотическим, но иногда происходит в митозе (соматический кроссинговер). Он может также осуществляться внутри гена.

Кроссинговер - один из важнейших процессов, обеспечивающих комбинативную изменчивость и, тем самым, дающий материал для естественного отбора.

Суть этого процесса заключается в обмене участков гомологичных хромосом. Это происходит путем разрыва и последующего соединения в новом порядке хроматид. Кроссинговер может приводить к рекомбинации больших участков хромосомы с несколькими генами или частей одного гена (так называемый внутригенный кроссинговер ), обеих нитей молекулы ДНК или только одной. Кроссинговер происходит во время конъюгации в I фазе мейоза . Кроссинговер может наблюдаться и при митотическом делении , но реже. В случае бесполых организмов митотический кроссинговер является единственным способом генетической рекомбинации. Митотический кроссинговер способен привести к мозаичной экспрессии рецессивных признаков у гетерозиготной особи. Такая экспрессия имеет важное значение в онкогенезе и в изучении летальных рецессивных мутаций.

Явление кроссинговера было открыто Ф. Янссенсом в 1909 году при изучении мейоза клеток саламандры, но теоретически явление кроссинговера предсказывали и раньше. В частности, американский цитолог У. Сэттон в 1903 г. предположил, что в одной хромосоме может находиться несколько генов, и тогда должно наблюдаться сцепленное наследование признаков, т.е. несколько разных признаков могут наследоваться так, как будто они контролируются одним геном. Подобная совокупность генов в одной хромосоме образует группу сцепления. Собственно, изучение кроссинговера и групп сцепления позволило создать карты хромосом . Первая карта хромосом была создана для плодовой мушки дрозофилы.

Типы кроссинговера

В зависимости от типа клеток , в которых происходит кроссинговер:

  • мейотический - происходит в профазу первого деления мейоза, при образовании половых клеток,
  • митотический – при делении соматических клеток, главным образом эмбриональных. Приводит к мозаичности в проявлении признаков.

Взависимости от молекулярной гомологии участков хромосом , вступающих в кроссинговер:

  • обычный (равный) – происходит обмен разными участками хромосом.
  • неравный - наблюдается разрыв в нетождественных участках хромосом.

В зависимости от количества образованных хиазм и разрывов хромосом с последующих перекомбинацией генов:

  • одинарный,
  • двойной,
  • множественный.

Биологическое значение кроссинговера чрезвычайно велико, поскольку генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и тем самым повышать наследственную изменчивость, которая дает широкие возможности адаптации организма в различных условиях среды. Значение кроссинговера:

  • приводит к увеличению комбинативной изменчивости,
  • приводит к увеличению мутаций.

Человек специально проводит гибридизацию с целью получения необходимых вариантов комбинаций для использования в селекционной работе.

Мейотический - происходит в профазу первого деления мейоза, при образовании половых клеток.

Митотический – при делении соматических клеток, главным образом эмбриональных. Приводит к мозаичности в проявлении признаков.

2. В зависимости от молекулярной гомологии участков хромосом, вступающих в кроссинговер.

Обычный (равный) – происходит обмен разными участками хромосом.

Неравный - наблюдается разрыв в нетождественных участках хромосом.

3. В зависимости от количества образованных хиазм и разрывов хромосом с последующих перекомбинацией генов.

Одинарный

Множественный

Значение кроссинговера:

Приводит к увеличению комбинативной изменчивости

Приводит к увеличению мутаций.

23. На основании анализа результатов многочисленных эксперементов с дрозофилой Томас Морган сформулировал хромосомную теорию наследственности, сущность которой заключается в следующем:

Материальные носители наследственности – гены находяться в хромосомах, распологаются в них линейно на определенном расстоянии друг от друга.

Гены, расположенные в одной хромосоме, относятся к одной группе сцепления. Число групп сцепления соответствует гаплоидному числу хромосом.

Признаки, гены которых находятьс в одной хромосоме, наследуются сцеплено.

В потомстве гетерозиготных родителей новые сочетания генов, расположенных в дной паре хромосом, могут возникать в результате кроссинговера в процессе мейоза.

Частота кроссинговера, определяемая по проценту кроссоверных особей, зависит от расстояния между генами.

На основании линейного расположения генов в хромосоме и частоты кроссинговера как покозателя расстояния между генами можно построить карты хромосом.

24. Генетическая карта - схема расположения структурных генов и регуляторных элементов в хромосоме.

Первоначально взаимное расположение генов в хромосомах определяли по частоте кроссинговера между ними. Соответствующее генетическое расстояние измеряли в сантиморганах (или сантиморганидах, сМ): 1 сМ соответствует частоте кроссинговера в 1%. При таком методе генетического картирования физическое расстояние между генами нередко отличалось от их генетического расстояния, так как кроссинговер происходит не с одинаковой вероятностью в разных участках хромосом. При современных методах генетического картирования расстояние между генами измеряется в тысячах пар нуклеотидов (т.п.н.) и соответствует физическому.

При создании генетической карты устанавливают последовательности расположения генетических маркеров (в этом качестве использовали различные ДНК полиморфизмы, т.е. наследуемые вариации в структуре ДНК) по длине всех хромосом с определенной плотностью, т.е. на достаточно близком расстоянии друг от друга.

Генетическая карта маркерных последовательностей должна облегчить картирование всех генов человека, особенно генов наследственных болезней, что является одной из основных целей указанной программы. За короткое время было генетически картировано несколько тысяч генов.

Метод составления генетических карт, разработанный на дрозофиле, был перенесен на растения (кукуруза, львиный зев) и животные (мыши).

Составление генетических карт – процедура весьма трудоемкая. Генные структуры хромосом поддаются легкой расшифровке у тех организмов, которые быстро размножаются. Последнее обстоятельство является основной причиной того, что самые подробные карты существуют для дрозофилы, ряда бактерий и бактериофагов, а наименее подробные для растений.

25. Модификационная (фенотипическая) изменчивость - изменения в организме, связанные с изменением фенотипа вследствие влияния окружающей среды и носящие, в большинстве случаев, адаптивный характер. Генотип при этом не изменяется. В целом современное понятие «адаптивные модификации» соответствует понятию «определенной изменчивости», которое ввел в науку Чарльз Дарвин.

Предел проявления модификационной изменчивости организма при неизменном генотипе - норма реакции . Норма реакции обусловлена генотипом и различается у разных особей данного вида. Фактически норма реакции - спектр возможных уровней экспрессии генов, из которого выбирается уровень экспрессии, наиболее подходящий для данных условий окружающей среды. Норма реакции имеет пределы или границы для каждого биологического вида (нижний и верхний) - например, усиленное кормление приведет к увеличению массы животного, однако она будет находиться в пределах нормы реакции, характерной для данного вида или породы. Норма реакции генетически детерминирована и наследуется. Для разных признаков пределы нормы реакции сильно различаются. Например, широкие пределы нормы реакции имеют величина удоя, продуктивность злаков и многие другие количественные признаки), узкие пределы - интенсивность окраски большинства животных и многие другие качественные признаки.

Тем не менее, для некоторых количественных признаков характерна узкая норма реакции (жирность молока, число пальцев на ногах у морских свинок), а для некоторых качественных признаков - широкая (например, сезонные изменения окраски у многих видов животных северных широт). Кроме того, граница между количественными и качественными признаками иногда весьма условна.

Экспрессивность – степень фенотипического проявления аллеля. Например, аллели групп крови АВ0 у человека имеют постоянную экспрессивность (всегда проявляются на 100%), а аллели, определяющие окраску глаз, – изменчивую экспрессивность. Рецессивная мутация, уменьшающая число фасеток глаза у дрозофилы, у разных особей по разному уменьшает число фасеток вплоть до полного их отсутствия.

Пенетрантность – вероятность фенотипического проявления признака при наличии соответствующего гена. Например, пенетрантность врожденного вывиха бедра у человека составляет 25%, т.е. болезнью страдает только 1/4 рецессивных гомозигот. Медико-генетическое значение пенетрантности: здоровый человек, у которого один из родителей страдает заболеванием с неполной пенетрантностью, может иметь непроявляющийся мутантный ген и передать его детям.

26. Мутационная изменчивость

Мутационная изменчивость - возникновение изменений в наследственном материале, в самих молекулах ДНК. Может измениться не только состав ДНК, но и ее количество (количество хромосом). На мутагенный процесс имеют влияние разные факторы внешней и внутренней среды.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png