Условия появления тока

Современная наука создала теории, объясняющие природные процессы. В основе многих процессов лежит одна из моделей строения атома, так называемая планетарная модель. В соответствии с этой моделью атом состоит из положительно заряженного ядра и отрицательно заряженного облака из электронов, окружающего ядро. Разные вещества, состоящие из атомов, в большинстве своём стабильны и неизменны по своим свойствам при неизменных условиях окружающей среды. Но в природе существуют процессы, которые могут изменять стабильное состояние веществ и вызывать в этих веществах явление, называемое электрическим током .

Таким основным для природы процессом является трение. Многие знают, что если волосы расчёсывать расчёской изготовленной из некоторых видов пластика, или носить одежду из некоторых видов ткани, возникает эффект прилипания. Волосы притягиваются и прилипают к расчёске, то же самое происходит и с одеждой. Объясняется этот эффект трением, которое нарушает стабильность материала расчёски или ткани. Электронное облако может смещаться относительно ядра или частично разрушаться. И в результате вещество приобретает электрический заряд, знак которого определяется строением этого вещества. Электрический заряд, возникающий в результате трения, называют электростатическим.

Получается пара из заряженных веществ. Каждое из веществ имеет определённый электрический потенциал. На пространство между двумя заряженными веществами действует электрическое, в данном случае электростатическое поле. Эффективность электростатического поля зависит от величин потенциалов и определяется как разность потенциалов или напряжение.

  • Когда возникает напряжение, в пространстве между потенциалами появляется направленное движение заряженных частиц веществ – электрический ток.

Где течёт электрический ток?

При этом потенциалы будут уменьшаться, если трение прекратится. И, в конце концов, потенциалы исчезнут, а вещества вновь обретут стабильность.

Но если процесс формирования потенциалов и напряжения будет продолжаться в сторону их увеличения, ток также будет увеличиваться соответственно свойствам веществ, заполняющих пространство между потенциалами. Наиболее наглядной демонстрацией такого процесса является молния. Трение восходящего и нисходящего потоков воздуха друг о друга приводит к появлению огромного напряжения. В результате один потенциал формируется восходящими потоками в небе, а другой нисходящими потоками в земле. И, в конце концов, из-за свойств воздуха возникает электроток в виде молнии.

  • Первой причиной появления электрического тока является напряжение.
  • Второй причиной появления электротока является пространство, в котором действует напряжение – его размеры и чем оно заполнено.

Напряжение появляется не только от трения. Другие физические и химические процессы, которые нарушают уравновешенность атомов вещества, так же приводят к появлению напряжения. Напряжение возникает только как результат взаимодействия либо

  • одного вещества с другим веществом;
  • одного или нескольких веществ с полем или излучением.

Напряжение может появиться от:

  • химической реакции, которая происходит в веществе, как например, во всех батареях и аккумуляторах, а также во всех живых существах;
  • электромагнитного излучения, как например, в солнечных батареях и тепловых электрогенераторах;
  • электромагнитного поля, как например, во всех динамо-машинах.

Электроток имеет природу соответствующую веществу, в котором он течёт. Поэтому различается:

  • в металлах;
  • в жидкостях и газах;


  • в полупроводниках

В металлах электроток состоит только из электронов, в жидкостях и газах – из ионов, в полупроводниках – из электронов и «дырок».

Постоянный и переменный ток

Напряжение относительно своих потенциалов, знаки которых остаются неизменными, может изменяться только по величине.

  • При этом появляется постоянный или импульсный электрический ток.

Электроток зависит от длительности этого изменения и свойств пространства, заполненного веществом между потенциалами.

  • Но если знаки потенциалов изменяются и это приводит к изменению направления тока, он называется переменным , как и напряжение, его определяющее.

Жизнь и электрический ток

Для количественных и качественных оценок электрического тока в современной науке и технике используются определённые законы и величины. Основными законами являются:

  • закон Кулона;
  • закон Ома.

Шарль Кулон в 80-х годах 18 века определил появление напряжения, а Георг Ом в 20-х годах 19 века определил появление электротока.

В природе и человеческой цивилизации он используется в основном как переносчик энергии и информации, а тема его изучения и использования так же необъятна, как и сама жизнь. Например, исследования показали, что все живые организмы живут потому, что мышцы сердца сокращаются от воздействия импульсов электротока, вырабатываемого в организме. Все прочие мышцы работают аналогично. Клетка при делении использует информацию на основе электротока сверх высоких частот. Перечень подобных фактов с уточнениями можно продолжить в объёме книги.

Уже много сделано открытий, связанных с электрическим током, и ещё больше предстоит сделать. Поэтому, с появлением новых инструментов для исследований появляются новые законы, материалы и прочие результаты для практического использования данного явления.

Если изолированный проводник поместить в электрическое поле \(\overrightarrow{E} \), то на свободные заряды \(q\) в проводнике будет действовать сила \(\overrightarrow{F} = q\overrightarrow{E}\) В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, скомпенсирует полностью внешнее поле. Результирующее электростатическое поле внутри проводника будет равно нулю.

Однако, в проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда.

Направленное движение заряженных частиц называется электрическим током.

За направление электрического тока принято направление движения положительных свободных зарядов. Для существования электрического тока в проводнике необходимо создать в нем электрическое поле.

Количественной мерой электрического тока служит сила тока \(I\) - скалярная физическая величина, равная отношению заряда \(\Delta q\), переносимого через поперечное сечение проводника (рис. 1.8.1) за интервал времени \(\Delta t\), к этому интервалу времени:

$$I = \frac{\Delta q}{\Delta t} $$

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным .

В Международной системе единиц СИ сила тока измеряется в Амперах (А). Единица измерения тока 1 А устанавливается по магнитному взаимодействию двух параллельных проводников с током.

Постоянный электрический ток может быть создан только в замкнутой цепи , в которой свободные носители заряда циркулируют по замкнутым траекториям. Электрическое поле в разных точках такой цепи неизменно во времени. Следовательно, электрическое поле в цепи постоянного тока имеет характер замороженного электростатического поля. Но при перемещении электрического заряда в электростатическом поле по замкнутой траектории, работа электрических сил равна нулю. Поэтому для существования постоянного тока необходимо наличие в электрической цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения . Такие устройства называются источниками постоянного тока . Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами .

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Источник тока в электрической цепи играет ту же роль, что и насос, который необходим для перекачивания жидкости в замкнутой гидравлической системе. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.

Физическая величина, равная отношению работы \(A_{ст}\) сторонних сил при перемещении заряда \(q\) от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

$$ЭДС=\varepsilon=\frac{A_{ст}}{q}. $$

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в Вольтах (В).

При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа сторонних сил равна сумме ЭДС, действующих в этой цепи, а работа электростатического поля равна нулю.

Цепь постоянного тока можно разбить на отдельные участки. Те участки, на которых не действуют сторонние силы (т. е. участки, не содержащие источников тока), называются однородными . Участки, включающие источники тока, называются неоднородными .

При перемещении единичного положительного заряда по некоторому участку цепи работу совершают как электростатические (кулоновские), так и сторонние силы. Работа электростатических сил равна разности потенциалов \(\Delta \phi_{12} = \phi_{1} - \phi_{2}\) между начальной (1) и конечной (2) точками неоднородного участка. Работа сторонних сил равна по определению электродвижущей силе \(\mathcal{E}\), действующей на данном участке. Поэтому полная работа равна

$$U_{12} = \phi_{1} - \phi_{2} + \mathcal{E}$$

Величину U 12 принято называть напряжением на участке цепи 1-2. В случае однородного участка напряжение равно разности потенциалов:

$$U_{12} = \phi_{1} - \phi_{2}$$

Немецкий физик Г. Ом в 1826 году экспериментально установил, что сила тока \(I\), текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению \(U\) на концах проводника:

$$I = \frac{1}{R} U; \: U = IR$$

где \(R\) = const.

Величину R принято называть электрическим сопротивлением . Проводник, обладающий электрическим сопротивлением, называется резистором . Данное соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

В СИ единицей электрического сопротивления проводников служит Ом (Ом). Сопротивлением в 1 Ом обладает такой участок цепи, в котором при напряжении 1 В возникает ток силой 1 А.

Проводники, подчиняющиеся закону Ома, называются линейными . Графическая зависимость силы тока \(I\) от напряжения \(U\) (такие графики называются вольт-амперными характеристиками , сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при токах достаточно большой силы наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Для участка цепи, содержащего ЭДС, закон Ома записывается в следующей форме:

$$IR = U_{12} = \phi_{1} - \phi_{2} + \mathcal{E} = \Delta \phi_{12} + \mathcal{E}$$
$$\color{blue}{I = \frac{U}{R}}$$

Это соотношение принято называть обобщенным законом Ома или законом Ома для неоднородного участка цепи .

На рис. 1.8.2 изображена замкнутая цепь постоянного тока. Участок цепи (cd ) является однородным.

Рисунок 1.8.2.

Цепь постоянного тока

По закону Ома

$$IR = \Delta\phi_{cd}$$

Участок (ab ) содержит источник тока с ЭДС, равной \(\mathcal{E}\).

По закону Ома для неоднородного участка,

$$Ir = \Delta \phi_{ab} + \mathcal{E}$$

Сложив оба равенства, получим:

$$I(R+r) = \Delta\phi_{cd} + \Delta \phi_{ab} + \mathcal{E}$$

Но \(\Delta\phi_{cd} = \Delta \phi_{ba} = -\Delta \phi_{ab}\).

$$\color{blue}{I=\frac{\mathcal{E}}{R + r}}$$

Эта формула выражает закон Ома для полной цепи : сила тока в полной цепи равна электродвижущей силе источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи (внутреннего сопротивления источника).

Сопротивление r неоднородного участка на рис. 1.8.2 можно рассматривать как внутреннее сопротивление источника тока . В этом случае участок (ab ) на рис. 1.8.2 является внутренним участком источника. Если точки a и b замкнуть проводником, сопротивление которого мало по сравнению с внутренним сопротивлением источника (\(R\ \ll r\)), тогда в цепи потечет ток короткого замыкания

$$I_{кз}=\frac{\mathcal{E}}{r}$$

Сила тока короткого замыкания - максимальная сила тока, которую можно получить от данного источника с электродвижущей силой \(\mathcal{E}\) и внутренним сопротивлением \(r\). У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик и вызывать разрушение электрической цепи или источника. Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер). Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей.

В ряде случаев для предотвращения опасных значений силы тока короткого замыкания к источнику последовательно подсоединяется некоторое внешнее сопротивление. Тогда сопротивление r равно сумме внутреннего сопротивления источника и внешнего сопротивления, и при коротком замыкании сила тока не окажется чрезмерно большой.

Если внешняя цепь разомкнута, то \(\Delta \phi_{ba} = -\Delta \phi_{ab} = \mathcal{E}\), т. е. разность потенциалов на полюсах разомкнутой батареи равна ее ЭДС.

Если внешнее нагрузочное сопротивление R включено и через батарею протекает ток I , разность потенциалов на ее полюсах становится равной

$$\Delta \phi_{ba} = \mathcal{E} - Ir$$

На рис. 1.8.3 дано схематическое изображение источника постоянного тока с ЭДС равной \(\mathcal{E}\) и внутренним сопротивлением r в трех режимах: «холостой ход», работа на нагрузку и режим короткого замыкания (к. з.). Указаны напряженность \(\overrightarrow{E}\) электрического поля внутри батареи и силы, действующие на положительные заряды:\(\overrightarrow{F}_{э}\) - электрическая сила и \(\overrightarrow{F}_{ст}\) - сторонняя сила. В режиме короткого замыкания электрическое поле внутри батареи исчезает.

Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы - вольтметры и амперметры .

Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов. Любой вольтметр обладает некоторым внутренним сопротивлением \(R_{В}\). Для того, чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен. Для цепи, изображенной на рис. 1.8.4, это условие записывается в виде:

$$R_{В} \gg R_{1}$$

Это условие означает, что ток \(I_{В} = \Delta \phi_{cd} / R_{В}\), протекающий через вольтметр, много меньше тока \(I = \Delta \phi_{cd} / R_{1}\), который протекает по тестируемому участку цепи.

Поскольку внутри вольтметра не действуют сторонние силы, разность потенциалов на его клеммах совпадает по определению с напряжением. Поэтому можно говорить, что вольтметр измеряет напряжение.

Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением \(R_{А}\). В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи. Для цепи на рис. 1.8.4 сопротивление амперметра должно удовлетворять условию

$$R_{А} \ll (r + R_{1} + R{2})$$

чтобы при включении амперметра ток в цепи не изменялся.

Измерительные приборы - вольтметры и амперметры - бывают двух видов: стрелочные (аналоговые) и цифровые. Цифровые электроизмерительные приборы представляют собой сложные электронные устройства. Обычно цифровые приборы обеспечивают более высокую точность измерений.

Направленное движение заряженных частиц в электрическом поле.

Заряженными частицами могут являться электроны или ионы (заряженные атомы).

Атом, потерявший один или несколько электронов, приобретает положительный заряд. - Анион (положительный ион).
Атом, присоединивший один или несколько электронов, приобретает отрицательный заряд. - Катион (отрицательный ион).
Ионы в качестве подвижных заряженных частиц рассматриваются в жидкостях и газах.

В металлах носителями заряда являются свободные электроны, как отрицательно заряженные частицы.

В полупроводниках рассматривают движение (перемещение) отрицательно заряженных электронов от одного атома к другому и, как результат, перемещение между атомами образовавшихся положительно заряженных вакантных мест - дырок.

За направление электрического тока условно принято направление движения положительных зарядов. Это правило было установлено задолго до изучения электрона и сохраняется до сих пор. Так же и напряжённость электрического поля определена для положительного пробного заряда.

На любой единичный заряд q в электрическом поле напряженностью E действует сила F = qE , которая перемещает заряд в направлении вектора этой силы.

На рисунке показано, что вектор силы F - = -qE , действующей на отрицательный заряд -q , направлен в сторону противоположную вектору напряжённости поля, как произведение вектора E на отрицательную величину. Следовательно, отрицательно заряженные электроны, которые являются носителями зарядов в металлических проводниках, в реальности имеют направление движения, противоположное вектору напряжённости поля и общепринятому направлению электрического тока.

Количество заряда Q = 1 Кулон, перемещённое через поперечное сечение проводника за время t = 1 секунда, определится величиной тока I = 1 Ампер из соотношения:

I = Q/t .

Отношение величины тока I = 1 Aмпер в проводнике к площади его поперечного сечения S = 1 m 2 определит плотность тока j = 1 A/m 2:

Работа A = 1 Джоуль, затраченная на транспортировку заряда Q = 1 Кулон из точки 1 в точку 2 определит значение электрического напряжения U = 1 Вольт, как разность потенциалов φ 1 и φ 2 между этими точками из расчёта:

U = A/Q = φ 1 - φ 2

Электрический ток может быть постоянным или переменным.

Постоянный ток - электрический ток, направление и величина которого не меняются во времени.

Переменный ток - электрический ток, величина и направление которого меняются с течением времени.

Ещё в 1826 году немецкий физик Георг Ом открыл важный закон электричества, определяющий количественную зависимость между электрическим током и свойствами проводника, характеризующими их способность противостоять электрическому току.
Эти свойства впоследствии стали называть электрическим сопротивлением, обозначать буквой R и измерять в Омах в честь первооткрывателя.
Закон Ома в современной интерпретации классическим соотношением U/R определяет величину электрического тока в проводнике исходя из напряжения U на концах этого проводника и его сопротивления R :

Электрический ток в проводниках

В проводниках имеются свободные носители зарядов, которые под действием силы электрического поля приходят в движение и создают электрический ток.

В металлических проводниках носителями зарядов являются свободные электроны.
С повышением температуры хаотичное тепловое движение атомов препятствует направленному движению электронов и сопротивление проводника увеличивается.
При охлаждении и стремлении температуры к абсолютному нулю, когда прекращается тепловое движение, сопротивление металла стремится к нулю.

Электрический ток в жидкостях (электролитах) существует как направленное движение заряженных атомов (ионов), которые образуются в процессе электролитической диссоциации.
Ионы перемещаются в сторону электродов, противоположных им по знаку и нейтрализуются, оседая на них. - Электролиз.
Анионы - положительные ионы. Перемещаются к отрицательному электроду - катоду.
Катионы - отрицательные ионы. Перемещаются к положительному электроду - аноду.
Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.
При нагревании сопротивление электролита уменьшается из-за увеличения числа молекул, разложившихся на ионы.

Электрический ток в газах - плазма. Электрический заряд переносится положительными или отрицательными ионами и свободными электронами, которые образуются под действием излучения.

Существует электрический ток в вакууме, как поток электронов от катода к аноду. Используется в электронно-лучевых приборах - лампах.

Электрический ток в полупроводниках

Полупроводники занимают промежуточное положение между проводниками и диэлектриками по своему удельному сопротивлению.
Знаковым отличием полупроводников от металлов можно считать зависимость их удельного сопротивления от температуры.
С понижением температуры сопротивление металлов уменьшается, а у полупроводников, наоборот, возрастает.
При стремлении температуры к абсолютному нулю металлы стремятся стать сверхпроводниками, а полупроводники - изоляторами.
Дело в том, что при абсолютном нуле электроны в полупроводниках будут заняты созданием ковалентной связи между атомами кристаллической решётки и, в идеале, свободные электроны будут отсутствовать.
При повышении температуры, часть валентных электронов может получать энергию, достаточную для разрыва ковалентных связей и в кристалле появятся свободные электроны, а в местах разрыва образуются вакансии, которые получили название дырок.
Вакантное место может быть занято валентным электроном из соседней пары и дырка переместится на новое место в кристалле.
При встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами полупроводника и происходит обратный процесс – рекомбинация.
Электронно-дырочные пары могут появляться и рекомбинировать при освещении полупроводника за счет энергии электромагнитного излучения.
В отсутствие электрического поля электроны и дырки участвуют в хаотическом тепловом движении.
В электрическое поле в упорядоченном движении участвуют не только образовавшиеся свободные электроны, но и дырки, которые рассматриваются как положительно заряженные частицы. Ток I в полупроводнике складывается из электронного I n и дырочного I p токов.

К числу полупроводников относятся такие химические элементы, как германий, кремний, селен, теллур, мышьяк и др. Самым распространенным в природе полупроводником является кремний.

Замечания и предложения принимаются и приветствуются!

Электрический ток это заряженные частицы, способные упорядоченно передвигаться в каком-либо проводнике. Это движение происходит под воздействием электрического поля. Возникновение электрических зарядов происходит, практически, постоянно. Особенно ярко это проявляется, когда различные вещества контактируют между собой.

Если возможно полное свободное перемещение зарядов относительно друг друга, то эти вещества являются проводниками. Когда такое передвижение невозможно, данная категория веществ считается изоляторами. К проводникам относятся все металлы с различной степенью проводимости, а также соляные и кислотные растворы. Изоляторами могут быть природные вещества в виде эбонита, янтаря, различных газов и кварцев. Они могут иметь искусственное происхождение, например, ПВХ, полиэтилен и прочие.

Величины электрического тока

Как физическая величина, ток может измеряться по своим основным параметрам. По результатам измерений, определяется возможность использования электричества в той или иной области.

Существует два вида электрического тока - постоянный и переменный. Первый, всегда остается неизменным во времени и направлении, а во втором случае, происходят изменения по этим параметрам за определенный промежуток времени.

Электрическим током называется упорядоченный поток отрицательно заряженных элементарных частиц – электронов. Электрический ток необходим для освещения домов и улиц, обеспечения работоспособности бытовой и производственной техники, движения городского и магистрального электротранспорта и.т.п.

Электрический ток

  • R н – сопротивление нагрузки
  • A – индикатор
  • К – коммутатор цепи

Ток – количество зарядов прошедших в единицу времени через поперечное сечение проводника.

I =
  • I – сила тока
  • q – количество электричества
  • t – время

Единицу силы тока называют амперам А, по имени французского учёного Ампера .

1А = 10 3 мА = 10 6 мкА

Плотность электрического тока

Электрическому току присущ ряд физических характеристик, имеющих количественные значения, выражаемые в определенных единицах. Основными физическими характеристиками электротока являются его сила и мощность. Сила тока количественно выражается в амперах, а мощность тока – в ваттах. Не менее важной физической величиной считается векторная характеристика электрического тока, или плотность тока. В частности, понятием плотности тока пользуются при проектировании линий электропередач.

J =
  • J – плотность электрического тока А / ММ 2
  • S – площадь поперечного сечения
  • I – ток

Постоянный и переменный ток

Электропитание всех электрических устройств осуществляется постоянным либо переменным током .

Электрический ток , направление и значение которого не меняются, называется постоянным .

Электрический ток , направление и значение которого способны изменяться называется переменным .

Электропитание многих электротехнических устройств осуществляется переменным током , изменение которого графически представлено в виде синусоиды.

Использование электрического тока

Можно с уверенностью констатировать, что самым великим достижением человечества является открытие электрического тока и его использование. От электрического тока зависят тепло и свет в домах, поступление информации из внешнего мира, общение людей, находящихся в различных точках планеты, и многое другое.

Современную жизнь невозможно представить без повсеместного наличия электричества. Электричество присутствует абсолютно во всех сферах жизнедеятельности людей: в промышленности и сельском хозяйстве, в науке и космосе.

Электричество также является неизменной составляющей повседневного быта человека. Такое повсеместное распространение электричества стало возможным благодаря его уникальным свойствам. Электрическая энергия может мгновенно передаваться на огромные расстояния и преобразовываться в различные виды энергий иного генезиса.

Основными потребителями электрической энергии являются промышленная и производственная сферы. При помощи электроэнергии приводятся в действие различные механизмы и устройства, осуществляются многоэтапные технологические процессы.

Невозможно переоценить роль электроэнергии в обеспечении работы транспорта. Практически полностью электрифицирован железнодорожный транспорт. Электрификация железнодорожного транспорта сыграла значительную роль в обеспечении пропускной способности дорог, увеличении скорости передвижения, снижении себестоимости пассажироперевозок, решении проблемы экономии топлива.

Наличие электричества является непременным условием обеспечения комфортных условий жизни людей. Вся бытовая техника: телевизоры, стиральные машины, микроволновые печи, нагревательные приборы – нашла свое место в жизни человека только благодаря развитию электротехнического производства.

Главенствующая роль электроэнергии в развитии цивилизации неоспорима. Нет такой области в жизни человечества, которая обходилась бы без потребления электрической энергии и альтернативу которой могла бы составить мускульная сила.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png